# PROCESS COSTING: Steps & Practices

"If you can't describe what you are doing as a process, you don't know what you're doing." - W. Edwards Deming

SAMSINOR BINTI IBRAHIM NUR 'ABIDAH BINTI SOLIHUDDIN NORHAZMA BINTI NAFI

# PROCESS COSTING: Steps & Practices

# SAMSINOR BINTI IBRAHIM NUR 'ABIDAH BINTI SOLIHUDDIN NORHAZMA BINTI NAFI

#### ©ePembelajaran Politeknik Merlimau

#### Writer

Samsinor binti Ibrahim Nur 'Abidah binti Solihuddin Norhazma binti Nafi

#### Published in 2021

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanic methods, without the prior written permission of the writer.

Perpustakaan Negara Malaysia
Samsinor Ibrahim
PROCESS COSTING : Steps & Practices / SAMSINOR BINTI IBRAHIM, NUR 'ABIDAH BINTI SOLIHUDDIN, NORHAZMA BINTI NAFI.
Mode of access: Internet eISBN 978-967-2241-82-9
1. Manufacturing processes--Costs.
2. Cost accounting.
3. Government publications--Malaysia.
4. Electronic books.
I. Nur 'Abidah Solihuddin. II. Norhazma Nafi. III. Title.
670

**Published by:** Politeknik Merlimau, Melaka KB1031 Pej Pos Merlimau, 77300 Merlimau Melaka

#### **EDITORIAL BOARD**

#### **Managing Editor**

Ts Dr. Maria binti Mohammad Rosheela binti Muhammad Thangaveloo Nisrina binti Abd Ghafar Azrina binti Mohmad Sabiri Zuraida bt Yaacob Raihan binti Ghazali

#### Editor

Sabrina binti Isnin

#### Designer

Samsinor binti Ibrahim Nur 'Abidah binti Solihuddin Norhazma binti Nafi

#### **Proofreading & Language Editing:**

Nor Fazila binti Shamsuddin Maisarah binti Abdul Latif Rosheela binti Muhammad Thangaveloo

PROCESS COSTING ii

#### ACKNOWLEDGEMENT

We would like to record our warm appreciation and thanks to the many parties who have provided encouragement and helpful comments towards the arrangement of this Process Costing: Steps and Practices e-book. It is our hope that this e-book would help students and readers to gain better understanding of this course.

#### PREFACE

# "If you can't describe what you are doing as a process, you don't know what you're doing."

#### - W. Edwards Deming

Soap-making, paint-making, paper-making, oil refining, rubber processing, chemical manufacturing, food and beverage manufacturing and etc. are example of industries which involve in stages in their manufacturing. The many separate stages of manufacture through which a product passes are known as processes. The process must be continuous, which means that the production of a product or an item can continue uninterrupted for a period of time

The cost of a product or an item at each stage or process is determined by using process costing. According to Charted Institute of Management Accountant (CIMA), process costing is defined as a basic costing method applicable where goods or services result from a sequence of continuous or repetitive operations or processes to which costs are changed before being averaged over the units produced during the period. It can be simplified that process costing is determining costs, charging costs and averaging costs over the units produced.

The e-book entitled, "**Process Costing: Steps and Practices**" is aimed to present the information, notes and practices of process costing. It comprises of two parts; Part 1 is on the introduction of process costing and process cost account and Part 2 is on work in progress. The information under both parts cover the sub-topic of costing method of the syllabus. In part 2 of the e-book, it comprises of guidelines of the steps that should be considered by the students in preparing the process costing accounts under certain circumstances. Hopefully this e-book will help students and readers enhancing their knowledge and understanding of the process costing itself.

|           |      |        |                                                       | 3   |
|-----------|------|--------|-------------------------------------------------------|-----|
|           |      |        | ACKNOWLEDGEMENT                                       | iii |
|           |      |        | PREFACE                                               | iv  |
|           |      |        | Part 1                                                | 1   |
| S         | 1.1  | Intro  | duction to Process Costing                            |     |
| C         |      | 1.1.1  | Definition                                            | 2   |
|           |      | 1.1.2  | Difference between Job Order Costing and Process      |     |
| AC        |      | Costi  | ng                                                    | 2   |
| R         |      | 1.1.3  | Characteristics                                       | 4   |
| <b>H</b>  | 1.2  | Proce  | ess Cost Account                                      | 5   |
|           |      | 1.2.1  | Accounting Entries for Process Cost Account           | 5   |
| A         |      | 1.2.2  | Accounting Treatment for Process Costing              | 5   |
| <b>PS</b> |      | 1.2.3  | Process Costing having no Process Loss                | 5   |
|           |      | 1.2.4  | Process Costing having Process Losses or Gains        | 9   |
| S         | PRAC | TICE Q | UESTIONS                                              | 21  |
| 5         |      |        | Part 2                                                | 26  |
| Z         | 2.1  | Defini | tion Work in Progress                                 | 27  |
|           | 2.2  | Equiv  | alent Units                                           | 28  |
| 50        | 2.3  | Proce  | ss Costing with Closing Work in Progress (WIP)        | 31  |
| U         |      | 2.3.1  | Closing WIP without any Process Loss or Gain          | 31  |
| SS        |      | 2.3.2  | Closing WIP with Process Loss or Gain                 | 33  |
| Ш́        | 2.4  | Proce  | ss Costing with Opening and Closing Work in Progress  | 37  |
| ŏ         |      | 2.4.1  | Opening and Closing WIP without any Process Loss or   |     |
| PR        |      | Gain   |                                                       | 38  |
|           |      | 2.4.2  | Opening and Closing WIP with any Process Loss or Gain | 44  |
|           | PRAC | TICE Q | UESTIONS                                              | 53  |
|           |      |        | REFERENCES                                            | 62  |

# PART 1

# **INTRODUCTION:**

- 1.1 Introduction to Process Costing
  - 1.1.1 Definition
  - 1.1.2 Difference between Job Order Costing and Process Costing
  - 1.1.3 Characteristics
- 1.2 Process Cost Account
  - 1.2.1 Accounting Entries for Process Cost Account
  - 1.2.2 Accounting Treatment for Process Costing
  - 1.2.3 Process Costing having no Process Loss
  - 1.2.4 Process Costing having Process Losses or Gains
    - Normal Loss
    - Abnormal Loss
    - Abnormal Gains

# PART 1

# INTRODUCTION

#### **1.1 INTRODUCTION TO PROCESS COSTING**

#### 1.1.1 Definition

#### **DEFINITION PROCESS COSTING**

Defined by the ICMA as, "that form of operation costing which applies where standardised goods are produced'

it is method of costing used to determine the **cost of the product at each process**, operation or stage of manufacture.

It is used where the production follows a series of sequential process

#### **1.1.2 Difference between Job Order Costing Vs Process Costing**

| Criteria        | Job Order Costing       | Process Costing           |  |  |
|-----------------|-------------------------|---------------------------|--|--|
|                 | Job costing refers to   | A costing method, in      |  |  |
|                 | calculating the cost of | which the costs which are |  |  |
|                 | a special contract,     | changed to various        |  |  |
| Meaning         | work order where work   | processes and operations  |  |  |
|                 | is performed as per     | is ascertained, is known  |  |  |
|                 | client's or order's     | as Process Costing.       |  |  |
|                 | instructions.           |                           |  |  |
| Nature          | Customized production   | Standardized production   |  |  |
| Cost Collection | Based on job ordered    | Cost collected at the end |  |  |
| Cost Conection  | by customer             | of the period             |  |  |
|                 |                         |                           |  |  |

#### PROCESS COSTING 3

| Types of product            | Heterogeneous                                                                | Homogeneous                                                                                        |
|-----------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Transfer of cost            | No transfer                                                                  | Cost is transferred from one process to another.                                                   |
| Applicability               | Specific product or job<br>based on customers<br>order                       | Mass production of similar<br>unit, produced<br>continuously all through<br>that year              |
| Computation of unit<br>cost | Unit cost is obtained by<br>dividing the cost of the<br>job by unit produced | Unit cost is obtained by<br>dividing the<br>departmental, process<br>cost by process<br>production |

#### A comparison of job and process costing.





#### **1.1.3 Characteristics**



#### 1.2 PROCESS COST ACCOUNT

#### ACCOUNTING ENTRIES Dr Process Account X – Cr Material Х Wages Х Overhead Х On the completion, the process account is closed to the finished goods account. Dr Finished Goods Х X Cr Process Account

#### 1.2.1 Accounting entries for process cost account

#### **1.2.2** Accounting treatment for process costing



#### 1.2.3 Process Costing Having No Process Loss



#### EXAMPLE 1.1 **NO PROCESS LOSS OR GAIN**

A product KLM is manufactured by two distinct processes 1 and 2. During the month of July 2018 the following information was obtained in respect of KLM.

|                 | PROCESS 1 | PROCESS 2 |
|-----------------|-----------|-----------|
| Output          | 700 kg    | 1,200 kg  |
| Material        | 700 kg    | 500 kg    |
| Material (RM)   | RM 2,800  | RM 3,500  |
| Labour (RM)     | RM 4,000  | RM 4,500  |
| Direct Expenses | RM 1,800  | RM 1,300  |

Overhead is absorbed by the processes on the basis of direct labour cost percentage rate of 100%.

Prepared Process 1 and Process 2 Account.

#### **SOLUTION:**

#### **STEP 1: Find Physical Unit**

Cost per unit = RM2,800

| <br>71 | <b>٦</b>   | ור         |            | ~ |
|--------|------------|------------|------------|---|
| 71     |            |            | <i>C</i> ( |   |
| / \    | <i>J</i> ( | <i>J</i> 1 | 1          | ч |

| PROCES                                                        | /                |                  |        |
|---------------------------------------------------------------|------------------|------------------|--------|
|                                                               | Quantity<br>(Kg) | Cost per<br>Unit | RM     |
| Material                                                      | 700              | RM 4 🕨           | 2,800  |
| Labour                                                        |                  |                  | 4,000  |
| Direct Expenses                                               |                  |                  | 1,800  |
| Overhead (100% of direct labour)                              |                  |                  | 4,000  |
| Normal Output / Cost                                          | 700              | RM 18            | 12,600 |
| (-) Actual Output                                             | (700)            | 1                |        |
| Abnormal Loss/Gain                                            | 0                |                  |        |
| Cost per unit = Cost incurred<br>Normal Output (<br>RM 12,600 | kg)              |                  |        |

#### 700 kg = RM 18 per kg

| PROCI                            | t = <u>RM 3,500</u><br>500 kg |          |        |
|----------------------------------|-------------------------------|----------|--------|
|                                  | Quantity                      | Cost per | RM     |
|                                  | (Kg)                          | Unit     |        |
| Input transferred from process 1 | 700                           | RM 18    | 12,600 |
| Material                         | 500                           | RM 7 🎽   | 3,500  |
| Labour                           |                               |          | 4,500  |
| Direct Expenses                  |                               |          | 1,300  |
| Overhead (100% of direct labour) |                               |          | 4,500  |
| Normal Output / Cost             | 1,200                         | RM 22    | 26,400 |
| (-) Actual Output                | (1,200)                       |          |        |
|                                  | 0                             |          |        |



### **STEP 2: Prepare Account by Process**

|                                  | Quantity | Cost per | RM     |
|----------------------------------|----------|----------|--------|
|                                  | (Kg)     | Unit     |        |
| Material                         | 700      | RM 4     | 2 800  |
| Labour                           |          |          | 4 000  |
| Direct Expenses                  |          |          | 1 800  |
| Overhead (100% of direct labour) |          |          | 4 000  |
| Normal Output / Production       | 700      | RM 18    | 12 600 |

#### DEBIT

| Process 1 Account  |     |     |        |                                    |     |     |        |
|--------------------|-----|-----|--------|------------------------------------|-----|-----|--------|
|                    | Qty | CPU | RM     |                                    | Qty | CPU | RM     |
| Material           | 700 | 4   | 2,800  | Output<br>Transfer to<br>Process 2 | 700 | 18  | 12,600 |
| Labour             |     |     | 4,000  |                                    |     |     |        |
| Direct<br>Expenses |     |     | 1,800  |                                    |     |     |        |
| Overhead           |     |     | 4,000  |                                    |     |     |        |
|                    | 700 |     | 12,600 |                                    | 700 |     | 12,600 |

|                                  | Quantity<br>(Kg) | Cost per<br>Unit | RM     |
|----------------------------------|------------------|------------------|--------|
| Input transferred from process 1 | 700              | RM 18            | 12,600 |
| матегіаі                         | 500              | KM /             | 3,500  |
| Labour                           |                  |                  | 4,500  |
| Direct Expenses                  |                  |                  | 1,300  |
| Overhead (100% of direct labour) |                  |                  | 4,500  |
| Normal Output / Cost             | 1,200            | RM 22            | 26,400 |

### DEBIT

|                                           |       | Р     | rocess 2 | Account                                    |       |     |        |
|-------------------------------------------|-------|-------|----------|--------------------------------------------|-------|-----|--------|
|                                           | Qty   | CPU   | RM       |                                            | Qty   | CPU | RM     |
| Input<br>transferred<br>from<br>process 1 | 700   | 18    | 12,600   | Output<br>Transfer to<br>Finished<br>Goods | 1,200 | 22  | 26,400 |
| Material                                  | 500   | 7     | 3,500    |                                            |       |     |        |
| Labour                                    |       |       | 4,500    |                                            |       |     |        |
| Direct<br>Expenses                        |       |       | 1,300    |                                            |       |     |        |
| Overhead                                  |       |       | 4,500    |                                            |       |     |        |
|                                           | 1,200 |       | 26,400   |                                            | 1,200 |     | 26,400 |
|                                           |       | 1     |          |                                            |       |     |        |
|                                           |       | Finis | shed Goo | ds Account                                 |       |     |        |
|                                           | Qty   | CPU   | RM       |                                            | Qty   | CPU | RM     |
| Input<br>transferred<br>from<br>process 2 | 1,200 | 22    | 26,400   |                                            |       |     |        |
|                                           |       |       |          |                                            |       |     |        |
|                                           |       |       |          |                                            |       |     |        |

#### 1.2.4 Process Costing Having Process Loss or Gains

#### PROCESS COSTING HAVING PROCESS LOSSES OR GAINS

- In many process, some loss is inevitable. Certain production techniques are such a nature that some loss is inherent to the production.
- Wastages of material, evaporation of material is unavoidable in some process.
- But sometimes the losses are also accuring due to negligence of labourer, poor quality raw material, poor technology, etc.
- These are normally called as **AVOIDABLE LOSSES**.
- Basically process losses are classified into two categories **NORMAL LOSS** and **ABNORMAL LOSS**.

#### NORMAL LOSS

It is the expected loss in processing and is usually expressed as a percentange of input units of materials.

It may be inherent in the process and is unavoidable.

#### ABNORMAL LOSS

Unexpected abnormal conditions such as plant breakdown, substandard material, carelessness, accident etc.

If it is assumed that losses occur at the end of process, units of abnormal loss are costed exactly as finished output units. Should not be allowed to affect the cost of production as it is caused by abnormal or unexpected conditions. Treated as an expense and charged in Income Statement.

#### FORMULA

• ABNORMAL LOSS = ACTUAL PRODUCTION - NORMAL PRODUCTION

#### **ABNORMAL GAIN**

More output over the expected or normal output realized Caused due to rise in the efficiency of production department The value of the abnormal gain calculated in the similar manner of abnormal loss.

#### FORMULA

• ABNORMAL GAIN = ACTUAL PRODUCTION - NORMAL PRODUCTION

#### EXAMPLE 1.2 NORMAL LOSS

Mr Bean's chocolate Wiggly produce a single product by continuously processing a single raw material. By the end of the month, the data recorded were as below:

Mr Bean allows the staff to eat 5% of the chocolate as they work on Process 1. There was no scrap value. **Prepare** the process accounts and calculate the cost per kg.

#### SOLUTION:

Cost per unit =  $\frac{RM6,000}{4,000}$  kg

|                                 | Quantity<br>(Kg) | Cost per<br>Unit | RM     |
|---------------------------------|------------------|------------------|--------|
| Material                        | 4,000            | RM 1.50          | 6,000  |
| Labour                          |                  |                  | 4,100  |
| Overhead                        |                  |                  | 3,200  |
| TOTAL INPUT                     | 4,000            |                  | 13,300 |
| (-) Normal Loss (5% x 4,000 kg) | (200)            | 0                | 0      |
| Normal Output/Production        | 3,800            | 3.50             | 13,300 |

| Cost per unit | = ' | Cost incurred      |
|---------------|-----|--------------------|
|               |     | Normal Output (kg) |
|               |     | RM 13,300          |
|               |     | 3,800 kg           |
|               | =   | RM 3.50 per ka     |

#### STEP 2: Prepare Account by Process

| Process 1 Account |       |      |        |                                    |       |      |        |
|-------------------|-------|------|--------|------------------------------------|-------|------|--------|
|                   | Qty   | CPU  | RM     |                                    | Qty   | CPU  | RM     |
| Material          | 4,000 | 1.50 | 6,000  | Normal<br>Loss                     | 200   | 0    | 0      |
| Labour            |       |      | 4,100  | Output<br>Transfer to<br>Process 2 | 3,800 | 3.50 | 13,300 |
| Overhead          |       |      | 3,200  |                                    |       |      |        |
|                   | 4,000 |      | 13,300 |                                    | 4,000 |      | 13,300 |
| -                 |       |      |        |                                    |       |      |        |

#### EXAMPLE 1.3 NORMAL LOSS (with scrap value)

Mr Bean's chocolate Wiggly produce a single product by continuously processing a single raw material. By the end of the month, the data recorded were as below:

|               | PROCESS 1 |
|---------------|-----------|
| Material      | 4,000 kg  |
| Material (RM) | RM 6,000  |
| Labour (RM)   | RM 4,100  |
| Overhead      | RM 3,200  |

Mr Bean allows the staff to eat 5% of the chocolate as they work on Process 1. The normal loss could be sold for scrap value RM 4.75 per kg.

**Prepare** the process accounts and calculate the cost per kg.

# SOLUTION:

|                                                                                                  |               |        |           | Quantity<br>(Kg)                   | Cost pe<br>Unit | er   | RM     |
|--------------------------------------------------------------------------------------------------|---------------|--------|-----------|------------------------------------|-----------------|------|--------|
| Material                                                                                         |               |        |           | 4,000                              | RM 1.5          | 0    | 6,000  |
| Labour                                                                                           |               |        |           |                                    |                 |      | 4,100  |
| Overhead                                                                                         |               |        |           |                                    |                 |      | 3,200  |
| TOTAL INPUT                                                                                      | •             |        |           | 4,000                              |                 |      | 13,300 |
| (-) Normal Lo<br>(5% x 4,0                                                                       | oss<br>00 kg) |        |           | (200)                              | 4.75            |      | (950)  |
| Normal Out                                                                                       | put/Produ     | uction |           | 3,800                              | 3.25            |      | 12,350 |
| Image: Step 2: Prepare Account by Process       Normal Output (kg)         Image: RM 3.25 per kg |               |        |           |                                    |                 |      |        |
|                                                                                                  |               | P      | Process 1 | Account                            |                 |      |        |
|                                                                                                  | Qty           | CPU    | RM        | Newsel                             | Qty             | CPU  | RM     |
| Material                                                                                         | 4,000         | 1.50   | 6,000     | Normal<br>Loss                     | 200             | 4.75 | 950    |
| Labour                                                                                           |               |        | 4,100     | Output<br>Transfer to<br>Process 2 | 3,800           | 3.50 | 13,300 |
| Overhead                                                                                         |               |        | 3,200     |                                    |                 |      |        |
|                                                                                                  | 4,000         |        | 13,300    |                                    | 4,000           |      | 13,300 |

| Nermal Loss Account |     |      |     |             |     |      |     |
|---------------------|-----|------|-----|-------------|-----|------|-----|
|                     | Qty | CPU  | RM  |             | Qty | CPU  | RM  |
| Process 1           | 200 | 4.75 | 950 | Debtor/Cash | 200 | 4.75 | 950 |
|                     |     |      |     |             |     |      |     |
|                     |     |      |     |             |     |      |     |

### EXAMPLE 1.4 ABNORMAL LOSS

The product "Honkey" is manufactured in Process 1. The following data are available:

|                     | PROCESS 1               |
|---------------------|-------------------------|
| Materials           | 1,000 kg @ RM 20 per kg |
| Labour              | RM 6,000                |
| Overhead            | RM 5,750                |
| Normal Loss         | 5% of input             |
| Scrap could be sold | RM 8 per kg             |
| Actual Output       | 900 kg                  |

**Prepare** the Process 1, Normal Loss and Abnormal Loss Account.

#### SOLUTION:

|         |                                                                                                                       | Quantity<br>(Kg)                            | Cost per<br>Unit | RM     |        |
|---------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------|--------|--------|
|         | Material                                                                                                              | 1,000                                       | 20               | 20,000 | I      |
| DEBIT ← | Labour                                                                                                                |                                             |                  | 6,000  |        |
|         | Overhead                                                                                                              |                                             |                  | 5,750  |        |
|         | TOTAL INPUT                                                                                                           | 1,000                                       |                  | 31,750 |        |
|         | (-) Normal Loss (5% x 1,000)                                                                                          | (50)                                        | 8                | (400)  |        |
|         | Normal Output / Production                                                                                            | 950                                         | 33               | 31,350 |        |
|         | (-) Actual Output                                                                                                     | (900)                                       | 1                |        | CREDIT |
|         | Abnormal Loss                                                                                                         | 50                                          |                  |        | )      |
|         | Cost per unit<br>= $\frac{\text{Cost ind}}{\text{Normal Out}}$<br>= $\frac{\text{RM 31}}{950}$<br>= <b>RM 33.00 p</b> | curred<br>tput (kg)<br>,350<br>kg<br>per kg |                  |        |        |
|         |                                                                                                                       |                                             |                  |        |        |

| TEP 2: Prepa | re Accour | nt by P | rocess     |                                                |       |     |        |
|--------------|-----------|---------|------------|------------------------------------------------|-------|-----|--------|
|              |           | I       | Process 1  | Account                                        |       |     |        |
|              | Qty       | CPU     | RM         |                                                | Qty   | CPU | RM     |
| Material     | 1,000     | 20      | 20,000     | Normal<br>Loss                                 | 50    | 8   | 400    |
| Labour       |           |         | 6,000      | Abnormal<br>Loss                               | 50    | 33  | 1,650  |
| Overhead     |           |         | 5,750      | Output<br>Transfer to<br>FG (actual<br>output) | 900   | 33  | 29,700 |
|              | 1,000     |         | 31,750     |                                                | 1,000 | -   | 31,750 |
|              |           | r       | lc rmal Lo | ss Account                                     |       |     |        |
|              | Qty       | CPU     | RM         |                                                | Qty   | CPU | RM     |
| Process 1    | 50        | 8       | 400        | Debtor/Cash                                    | 50    | 8   | 8 40   |
|              |           |         |            |                                                |       |     |        |
|              |           |         |            |                                                |       |     |        |
|              |           | Ab      | n rmal L   | ss Account                                     |       |     |        |
|              | Qty       | CPU     | RM         |                                                | Qty   | CPU | RM     |
| Process 1    | 50        | 33      | 1,650      | Cash                                           | 50    | 8   | 400    |
|              |           |         |            | SOCI (P&L)                                     |       |     | 1,250  |
|              | 50        |         | 1 650      |                                                | 50    |     | 1,650  |

#### EXAMPLE 1.5 ABNORMAL GAIN

Extra Sdn Bhd manufactures the product "ESB". The following information is available on Process A.

|                     | PROCESS A               |
|---------------------|-------------------------|
| Materials           | 1,000 kg @ RM 20 per kg |
| Labour              | RM 6,000                |
| Overhead            | RM 5,750                |
| Normal Loss         | 10% of input            |
| Scrap could be sold | RM 11.50 per kg         |
| Actual Output       | 950 kg                  |

Prepared the Process A, Normal Loss and Abnormal Gain Account.

#### SOLUTION:

|                            | Quantity<br>(Kg) | Cost per<br>Unit | RM      |
|----------------------------|------------------|------------------|---------|
| Material                   | 1,000            | 20               | 20,000  |
| Labour                     |                  |                  | 6,000   |
| Overhead                   |                  |                  | 5,750   |
| TOTAL INPUT                | 1,000            |                  | 31,750  |
| (-) Normal Loss            |                  |                  |         |
| (10% × 1,000)              | (100)            | 11.50            | (1,150) |
| Normal Output / Production | 900              | 34               | 30,600  |
| (-) Actual Output          | (950)            |                  |         |
| Abnormal Gain              | (50)             |                  |         |

| Cost per unit | = | Cost incurred      |
|---------------|---|--------------------|
|               |   | Normal Output (kg) |
|               |   | RM 30,600          |
|               | = | 900 kg             |
|               | = | RM 34.00 per kg    |

| TEP 2: Prepar    | e Accour | nt by Pr | ocess    |                                                |       |       |        |
|------------------|----------|----------|----------|------------------------------------------------|-------|-------|--------|
|                  |          | Ρ        | ocess A  | Account                                        |       |       |        |
|                  | Qty      | CPU      | RM       |                                                | Qty   | CPU   | RM     |
| Material         | 1,000    | 20       | 20,000   | Normal<br>Loss                                 | 100   | 11.50 | 1,150  |
| Labour           |          |          | 6,000    | Output<br>Transfer to<br>FG (actual<br>output) | 950   | 34 3  | 32,300 |
| Overhead         |          |          | 5,750    |                                                |       |       |        |
| Abnormal<br>Gain | 50       | 34       | 1,700    |                                                |       |       |        |
|                  | 1,100    | · · .    | 33,450   |                                                | 1,100 | :     | 33,450 |
|                  |          |          |          |                                                |       |       |        |
|                  | 0        | N        | rmal Lo  | ss Account                                     | 0     | CDU   | DM     |
|                  | Qty      | CPU      | RM       | Abnormal                                       | Qty   | CPU   | KM     |
| Process 1        | 100      | 11.50    | 1,150    | Gain                                           |       | 11.50 | 57     |
|                  |          |          |          | Debtor/Casl                                    | า 50  | 11.50 | 57     |
|                  |          |          |          |                                                |       |       |        |
|                  |          | ۸bn      | ( rmal G | in Account                                     |       |       |        |
|                  | Otv      |          |          | III Account                                    | Otv   | CPII  | RM     |
| Normal Loss      | 50       | 11.50    | 575      | Process 1                                      | 50    | 34    | 1,700  |
| SOCI (P&L)       |          |          | 1,125    |                                                |       |       | _,     |
|                  |          |          | 1 700    |                                                | 50    | _     | 1 700  |

#### EXAMPLE 1.6 COMPREHENSIVE EXAMPLE

The manufacturing company has two process in its manufacturing factory. Output of process 1 becomes the input for Process 2 and Process 2 production is ready for sale.

Normal loss in each process is expected to be at 5% of input for Process 1 and 10% of input for Process 2. Scrap value is RM 3 per unit.

Relevant information for period Y is given below:

|                | PROCESS 1            | PROCESS 2 |
|----------------|----------------------|-----------|
| Materials      | 3,000 kg @ RM 15 000 | -         |
| Added Material |                      | RM 2,535  |
| Labour (RM)    | RM 6,500             | RM 10,000 |
| Overhead       | RM 6,025             | RM 12,000 |
| Actual Output  | 1,750 kg             | 1,725 kg  |

Prepare the following accounts:

- a) Process Account I
- b) Process Account II
- c) Normal Loss Account
- d) Abnormal Loss Account
- e) Abnormal Gain Account
- f)

#### SOLUTION:

#### **STEP 1: Find Physical Unit**

#### PROCESS 1

|                                | Quantity<br>(Kg) | Cost per<br>Unit | RM     |
|--------------------------------|------------------|------------------|--------|
| Material                       | 3,000            | RM 5             | 15,000 |
| Labour                         |                  |                  | 6,500  |
| Overhead                       |                  |                  | 6,025  |
| Total Input                    | 3,000            |                  | 27,525 |
| (-) Normal Loss (5% x 3,000kg) | (150)            | 3                | (450)  |
| Normal Output / Production     | 2,850            | 9.50             | 27,075 |
| (-) Actual Output              | (1,750)          |                  |        |
| Abnormal Loss                  | 1,100            |                  |        |

| Cost per unit |   | Cost incurred      |
|---------------|---|--------------------|
|               | = | Normal Output (kg) |
|               |   | RM 27,075          |
|               | = | 2,850 kg           |
|               | = | RM 9.50 per ka     |

## **PROCESS 2**

|                                  | Quantity<br>(Kg)            | Cost per<br>Unit | RM     |
|----------------------------------|-----------------------------|------------------|--------|
| Output from Process 1            | 1,750<br>(actual<br>output) | RM 9.50          | 16,625 |
| Added Material                   |                             |                  | 2,535  |
| Labour                           |                             |                  | 10,000 |
| Overhead                         |                             |                  | 12,000 |
| TOTAL                            | 1,750                       |                  | 41,160 |
| (-) Normal Loss<br>(10% x 1,750) | (175)                       | 3                | (525)  |
| Normal Output / Production       | 1,575                       | 25.80            | 40,635 |
| (-) Actual Output                | (1,725)                     |                  |        |
| Abnormal Gain                    | (150)                       |                  |        |

| Cost per unit |   | Cost incurred      |
|---------------|---|--------------------|
|               | = | Normal Output (kg) |
|               |   | RM 40,635          |
|               | = | 1,575 kg           |
|               | = | RM 25.80 per unit  |

# **STEP 2: Prepare Account by Process**

|          | Process 1 Account |     |        |                                    |       |      |        |
|----------|-------------------|-----|--------|------------------------------------|-------|------|--------|
|          | Qty               | CPU | RM     |                                    | Qty   | CPU  | RM     |
| Material | 3,000             | 5   | 15,000 | Normal<br>Loss                     | 150   | 3    | 450    |
| Labour   |                   |     | 6,500  | Abnormal<br>Loss                   | 1,100 | 9.50 | 10,450 |
| Overhead |                   |     | 6,025  | Output<br>Transfer to<br>Process 2 | 1,750 | 9.50 | 16,625 |
|          | 3,000             |     | 27,525 |                                    | 3,000 |      | 27,525 |

| Process 2 Account       |       |       |        |                             |       |       |        |
|-------------------------|-------|-------|--------|-----------------------------|-------|-------|--------|
|                         | Qty   | CPU   | RM     |                             | Qty   | CPU   | RM     |
| Input from<br>Process 1 | 1,750 | 9.50  | 16,625 | Normal<br>Loss              | 175   | 3     | 525    |
| Added<br>Material       |       |       | 2,535  | Output<br>Transfer to<br>FG | 1,725 | 25.80 | 44,505 |
| Labour                  |       |       | 10,000 |                             |       |       |        |
| Overhead                |       |       | 12,000 |                             |       |       |        |
| Abnormal<br>Gain        | 150   | 25.80 | 3,870  |                             |       |       |        |
|                         | 1,975 |       | 45,030 |                             | 1,975 |       | 45,030 |

|           | Nermal Loss Account |     |     |           |     |     |     |
|-----------|---------------------|-----|-----|-----------|-----|-----|-----|
|           | Qty                 | CPU | RM  |           | Qty | CPU | RM  |
| Procoss 1 | 150                 | 2   | 450 | Cash-     | 150 | 2   | 450 |
| FIOLESS I |                     | J   | 430 | Process 1 |     | J   | 450 |
| Drococc 2 | 175                 | 2   | 525 | Cash-     | 25  | 2   | 75  |
| PIOCESS Z | 175                 |     | JZJ | Process 2 | 25  | J   | /5  |
|           |                     | T   |     | Abnormal  | 150 | 2   | 450 |
|           |                     |     |     | Gain      |     |     | 430 |
|           | 325                 | -   | 975 |           | 325 |     | 975 |

| Abr ormal L( ss Account |       |      |        |            |       |     |        |
|-------------------------|-------|------|--------|------------|-------|-----|--------|
|                         | Qty   | CPU  | RM     |            | Qty   | CPU | RM     |
| Process 1               | 1,100 | 9.50 | 10,450 | Cash       | 1,100 | 3   | 3,300  |
|                         |       |      |        | SOCI (P&L) |       |     | 7,150  |
|                         | 1,100 |      | 10,450 |            | 1,100 |     | 10,450 |

| Abnc rmal G in Account |     |       |       |           |     |       |       |
|------------------------|-----|-------|-------|-----------|-----|-------|-------|
|                        | Qty | CPU   | RM    |           | Qty | CPU   | RM    |
| Normal Loss            | 150 | 28.50 | 450   | Process 2 | 150 | 25.80 | 3,870 |
| SOCI (P&L)             |     |       | 3,420 |           |     |       |       |
|                        | 150 |       | 3,870 | -         | 150 |       | 3,870 |

#### **ENHANCEMENT EXERCISE 1.1**

Sejahtera Sdn Bhd manufacture products which pass through several distinct process. The following information is available from records:

|                  | PROCESS 1 | PROCESS 2 |
|------------------|-----------|-----------|
| Direct Materials | RM 7 000  | RM 6 000  |
| Direct Labour    | RM 4 500  | RM 3 500  |
| Direct Expenses  | RM 1 500  | RM 2 000  |
| Factory Overhead | RM 2 500  | RM 1 400  |

The quantities of input and output were as follows:

|        | PROCESS 1 (litre) | PROCESS 2 (Litre) |
|--------|-------------------|-------------------|
| Input  | 1 000             | 600               |
| Output | 1 000             | 1 600             |

#### **Required:**

Prepare process account for Sejahtera Sdn Bhd.



# PRACTICE QUESTIONS

- BERSIH SDN BHD
- BERSERI SDN BHD
- ALAM MESRA SDN BHD
- LYANG SDN BHD
- MALAQAT SDN BHD

# **ANSWERS:**



# **PRACTICE QUESTIONS**

#### QUESTION 1 Bersih Sdn Bhd

Bersih Sdn Bhd manufactures product which pass through several distinct processes. The following information is available for the process 1.

|                                   | PROCESS 1 |
|-----------------------------------|-----------|
| Input 600 kg of materials costing | RM 6 000  |
| Direct Labour                     | RM 1 500  |
| Direct Expenses                   | RM 2 200  |
| Factory Overhead                  | RM 1 034  |

#### **Additional Information:**

Normal loss is estimated to be 5% of input. Normal loss may be sold as scrap for RM 2.50 per kg. The actual output for this process was 550 kg.

#### **Required**:

Prepare Process 1 account and abnormal loss account.

# QUESTION 2 Berseri Sdn Bhd

Berseri Sdn Bhd manufactures product which pass through several distinct processes. The following information is available for the process 1.

|                                   | PROCESS 1 |
|-----------------------------------|-----------|
| Input 600 kg of materials costing | RM 6 000  |
| Direct Labour                     | RM 1 500  |
| Direct Expenses                   | RM 2 200  |
| Factory Overhead                  | RM 1 034  |

#### Additional Information:

Normal loss is estimated to be 5% of input. Normal loss may be sold as scrap for RM 2.50 per kg. The actual output for this process was 580 kg.

#### **Required**:

Prepare Process 1 account and abnormal gain account.

#### **QUESTION 3** Alam Mesra Sdn Bhd

Alam Mesra Sdn Bhd produces products using two sequential processes. In July 2014, the following information was obtained:

- 12 000 kg of raw materials were used in **Process I** at the cost of RM 8.50 per kg
- Direct labour cost amounted to RM 6 000
- Overhead is absorbed at 200% of direct labour cost.
- 2 000 kg of normal loss occurred.
- The scrap can be sold at RM5 per kg.
- 11 000 kg of output were transferred to the next process.
- No opening or ending work in the process.

#### You are required to:

- a) Calculate the physical units for Process I
- b) Prepare Process I Account
- c) Prepare Normal Loss Account
- d) Prepared Abnormal Gain or Loss Account

#### QUESTION 4 Lyang Sdn Bhd

Lyang Sdn Bhd produces products passing two departments before becoming finished goods. The following information was obtained during the production operation:

|                  | Mix Department            | Bake Department          |
|------------------|---------------------------|--------------------------|
| Direct Materials | 5 500 kg @ RM 0.50 per kg | 5 000kg @ RM 0.90 per kg |
| Direct Labour    | RM 880                    | RM 2 500                 |
| Factory Overhead | 150% on labour cost       | 100% on labour cost      |

The normal loss is estimated at 20% of input in Process 1 and 10% of input in Process 2. All losses were sold at RM 0.30 per kg from Process 1 and RM 0.70 per kg from process 2. Output process 1 is 4 000kg and 8 350 kg from Process 2. The company has no opening and closing work in process during the period.

- a) Calculate whether the company manage to obtain Abnormal Gain or suffer Abnormal Loss in Process 1 and Process 2
- b) Record the transactions in the Process 1 and Process 2 account
- c) Record the transaction in the Normal Loss, Abnormal Loss and Abnormal Gain account.

#### QUESTION 5 Malaqat Sdn Bhd

Malaqat Sdn Bhd has a product named 'CHAQ'. The product of this company went through 3 distinct process. The following information is obtained from the accounts for the month ending 31 December 2019.

|                 | PROCESS 1 | PROCESS 2 | PROCESS 3 |  |
|-----------------|-----------|-----------|-----------|--|
|                 | (RM)      | (RM)      | (RM)      |  |
| Direct material | 7 800     | 5 940     | 8 886     |  |
| Direct Labour   | 6 000     | 9 000     | 12 000    |  |
| Overhead        | 6 000     | 9 000     | 12 000    |  |

3 000 units at RM 3 each were introduced to Process 1. There was no stock of materials or WIP. The output of each process passes directly to the next process and finally to finished stock.

|           | Output | Normal loss | Scrap value |  |
|-----------|--------|-------------|-------------|--|
|           |        | (%)         |             |  |
| Process 1 | 2 850  | 5%          | 2           |  |
| Process 2 | 2 520  | 10%         | 4           |  |
| Process 3 | 2 250  | 15%         | 5           |  |

#### You are required to prepare:

- a) Process Account
- b) Normal Loss Account
- c) Abnormal Gain or Loss Account

# PART 2

# WORK IN PROGRESS (WIP):

- 2.1 Definition Work in Progress
- 2.2 Equivalent Units
- 2.3 Process Costing with Closing Work in Progress (WIP)2.3.1 Closing WIP without any Process Loss or Gain2.3.2 Closing WIP with Process Loss or Gain
- 2.4 Process Costing with Opening and Closing Work in Progress2.4.1 Opening and Closing WIP without any Process Loss orGain
  - Average Method (AVCO)
  - First in First Out Method (FIFO)
  - 2.4.2 Opening and Closing WIP with any Process Loss or Gain
    - Average Method (AVCO)
    - First in First Out Method (FIFO)

# PART 2

# VALUATION OF WORK IN PROGRESS [WIP]

#### 2.1 DEFINITION WORK IN PROGRESS

| DEFINITION WORK IN PROGRESS (WIP)                                                                  |
|----------------------------------------------------------------------------------------------------|
| Cost of unfinished goods in the manufacturing process including labor, raw materials and overhead. |
| <b>Opening WIP</b> is the number of incomplete units at the start of a process.                    |
| <b>Closing WIP</b> is the number at the end of the process.                                        |
| $\langle \rangle$                                                                                  |

To show production process completely, we have to convert incomplete units to **EQUIVALENT UNITS** 

#### WORKS-IN-PROGRESS VS. FINISHED GOODS

|                      | WORK IN PROGRESS            | FINISHED GOODS             |
|----------------------|-----------------------------|----------------------------|
|                      | Refers to the intermediary  |                            |
|                      | stage of inventory in which | Refer to the final stage   |
|                      | inventory has started its   | of inventory, in which the |
| Townshamile stage of | progress from the           | product has reached a      |
| Inventory's stage of | beginning as raw            | level of completion        |
| relative completion  | materials and is currently  | where the subsequent       |
|                      | undergoing development      | stage is the sale to a     |
|                      | or assembly into the final  | customer.                  |
|                      | product.                    |                            |

#### 2.2 EQUIVALENT UNITS

#### **DEFINITION EQUIVALENT UNITS**

Equivalent units is a measure of the work done during the period. it is expressed in full units and use to determine the unit cost of a product in process costing.

Equivalent units should be calculated separately for each element of cost (**material**, **labour and overhead**) because the percentage of completion of the different cost component may be different.

#### FORMULA

#### • EQUIVALENT UNIT = ACTUAL NUMBER OF UNITS IN PROGRESS x PERCENTAGE OF WORK COMPLETED

#### EXAMPLE 2.1

If 1,000 cars are 40% complete then the equivalent number of completed cars would be:

#### SOLUTION:

| Equivalent Unit | = | Actual no of units in progress | Х | % | of work |
|-----------------|---|--------------------------------|---|---|---------|
|                 |   | completed                      |   |   |         |
|                 | = | 1,000 units x 40%              |   |   |         |

= 400 cars

#### EXAMPLE 2.2

600 units were produced from Process A

It was estimated that of the 600 units:

- 200 units are complete
- 400 units are progress and 50% complete

The total cost incurred is RM 4,000.

Calculate:

- a) Equivalent units
- b) Cost per unit

#### SOLUTION:

| Equivalent Unit | =<br>=<br>= | Actual no of units in progress x % of work<br>completed<br>400 units x 40%<br><b>200 units</b>                |
|-----------------|-------------|---------------------------------------------------------------------------------------------------------------|
| Cost per unit   | =<br>=<br>= | Total Cost<br>Equivalent units + Completed units<br>RM4,000<br>200 units + 200 units<br><b>RM 10 per unit</b> |

#### 2.2.1 Preparation of Statements for WIP



#### WEIGHT AVERAGE COST (AVCO)

- Combines costs and equivalent units of a current period with the costs and the equivalent units in prior period.
- OWIP is analyzed into its cost elements.

#### FIRST IN FIRST OUT (FIFO) METHOD

- Cost per unit is calculated based on the current period cost and the current period production only.
- Cost of the opening WIP is added separately to completed production
- Degree of completion of OWIP must be known to determine the amount of work needed to complete the OWIP

#### 2.3 PROCESS COSTING WITH CLOSING WORK IN PROGRESS

#### **CLOSING WORK IN PROGRESS**

Closing WIP is converted into equivalent units on the basis of estimates on degree of completion of materials, labour and production overhead.

Afterwards, the cost per equivalent units is calculated and the same is used to value the finished output transferred and the closing WIP

#### 2.3.1 Closing Work in Progress without Any Process Loss or Gain

#### EXAMPLE 2.3

Prepare statement of equivalent of production, statement of cost,

Statement of Evaluation and process account from the following data:

| Unit Introduce                        | 4,000     |
|---------------------------------------|-----------|
| Output (unit)                         | 2,400     |
| Process Cost (RM)                     |           |
| Material                              | RM 7,040  |
| Labour                                | RM 10,080 |
| Overhead                              | RM 6,720  |
| Degree of completion for closing WIP: |           |
| Material                              | 70%       |
| Labour                                | 60%       |
| Overhead                              | 60%       |

#### SOLUTION:

#### STEP 1: Find the CWIP unit

| CWIP unit                          | 1 600   |
|------------------------------------|---------|
| (-) Unit Completed and transferred | (2 400) |
| Unit Introduce                     | 4 000   |

# **STEP 2: Statement of Equivalent Production**

| Output            |       | EQUIVALENT UNIT |                       |        |                     |          |                     |
|-------------------|-------|-----------------|-----------------------|--------|---------------------|----------|---------------------|
|                   |       | Material        |                       | Labour |                     | Overhead |                     |
|                   | Units | %               | Equ. unit             | %      | Equ. unit           | %        | Equ. unit           |
| Unit<br>completed | 2,400 | 100             | 2,400                 | 100    | 2,400               | 100      | 2,400               |
| CWIP              | 1,600 | 70%             | 1,120<br>(1600 x 0.7) | 60%    | 960<br>(1600 x 0.6) | 60%      | 960<br>(1600 x 0.6) |
|                   | 4,000 |                 | 3,520                 |        | 3,360               |          | 3,360               |

#### **STEP 3: Statement of Cost**

| ELEMENT<br>OF COST | COST (RM) | EQUIVALENT<br>UNIT | COST PER<br>EQUIVALENT UNIT<br>(RM) |
|--------------------|-----------|--------------------|-------------------------------------|
| Material           | 7,040     | 3,520              | 2 (7,040 / 3,520)                   |
| Labour             | 10,080    | 3,360              | 3 (10,080 / 3,360)                  |
| Overhead           | 6,720     | 3,360              | 2 (6,720 / 3,360)                   |
|                    | 23,840 —  |                    | 7                                   |

#### **STEP 4: Statement of Evaluation**

|                                 |       | RM     |
|---------------------------------|-------|--------|
| Completed Unit (2,400 x RM 7) 🚩 |       | 16,800 |
| Closing Work in progress:       |       |        |
| Material (1,120 x RM 2)         | 2,240 |        |
| Labour (960 x RM 3)             | 2,880 |        |
| Overhead (960 x RM 2)           | 1,920 | 7,040  |
|                                 |       | 23,840 |

#### **STEP 5: Process Account**

| P ocess / count |       |     |        |                    |       |     |        |  |
|-----------------|-------|-----|--------|--------------------|-------|-----|--------|--|
|                 | Qty   | CPU | RM     |                    | Qty   | CPU | RM     |  |
| Material        | 4,000 |     | 7,040  | Output<br>Transfer | 2,400 | 7   | 16,800 |  |
| Labour          |       |     | 10,080 | CWIP c/d           | 1,600 |     | 7,040  |  |
| Overhead        |       |     | 6,720  |                    |       |     |        |  |
|                 | 4,000 |     | 23,840 |                    | 4,000 |     | 23,840 |  |

#### EXAMPLE 2.4

Bino Sdn Bhd produces a product called 'RIAZ', which involves both Department X and Y. The following information on the two departments are available as follows:

| Department X                               |                  |
|--------------------------------------------|------------------|
| Unit Introduced                            | 2,000 units      |
| Unit completed and transfer to Department  | nt Y 1,400 units |
| Closing WIP (units)                        | 460 units        |
| Degree of completion:                      |                  |
| Material 75%                               |                  |
| Labour 50%                                 |                  |
| Overhead 50%                               |                  |
| Normal Loss is 5% of input with scrap valu | e of RM 10 each. |

• • •

Following is the further information on Process X:

| Cost of the 2 000 units    | RM 58,000 |
|----------------------------|-----------|
| Additional direct material | RM 14,400 |
| Direct labour              | RM 33,400 |
| Overhead                   | RM 16,700 |

You are required to prepare:

- a) Statement of Equivalent Production
- b) Statement of Cost and Evaluation
- c) Process X account.

# SOLUTION:

# STEP 1: Determine abnormal loss or abnormal gain

|                                    | Quantity |
|------------------------------------|----------|
|                                    | (unit)   |
| Input                              | 2 ,000   |
| (-) Closing WIP                    | (460)    |
| Total Output                       | 1,540    |
| (-) Normal Loss (% x input)        | (100)    |
| (5% x 2,000 units)                 |          |
| Normal Output / Production         | 1,440    |
| (-) Actual Output (Unit Completed) | (1,400)  |
| Abnormal Loss                      | 40       |

# **STEP 2: Statement of Equivalent Production**

| Outpu             |       | EQUIVALENT UNIT |                         |        |                    |           |                    |
|-------------------|-------|-----------------|-------------------------|--------|--------------------|-----------|--------------------|
| ομιραί            |       | Material        |                         | Labour |                    | Overhead  |                    |
|                   | Units | %               | % Equ. unit % Equ. unit |        | %                  | Equ. unit |                    |
| Unit<br>completed | 1,400 | 100             | 1,400                   | 100    | 1,400              | 100       | 1,400              |
| CWIP              | 460   | 75%             | 345<br>(460 x 0.75)     | 50%    | 230<br>(460 x 0.5) | 50%       | 230<br>(460 x 0.5) |
|                   | 1,860 |                 | 1,785                   |        | 1,670              |           | 1,670              |

# **STEP 3: Statement of Cost**

| ELEMENT<br>OF COST | COST (RM) | EQUIVALENT<br>UNIT | COST PER<br>EQUIVALENT UNIT<br>(RM) |
|--------------------|-----------|--------------------|-------------------------------------|
| Material           | 71,400    | 1,785              | 40 (71,400 /1,785)                  |
| Labour             | 33,400    | 1,670              | 3 (33,400 / 1,670)                  |
| Overhead           | 16,700    | 1,670              | <b>2</b> (16,700 / 1,670)           |
|                    | 121,500   | •••                | 70                                  |
|                    |           | •••                | ·                                   |

|                                      | RM              |
|--------------------------------------|-----------------|
| Input                                | 58,000          |
| Added Direct Material                | 14,400          |
|                                      | 72,400          |
| (-) Normal Loss (unit x scrap value) |                 |
| (100 unit x RM 10)                   | (1,000)         |
| Total Cost                           | <b>× 71,400</b> |
|                                      |                 |
|                                      |                 |
|                                      |                 |
| atement of Evaluation                |                 |
|                                      |                 |

#### **STEP 4: Statement of Evaluation**

|                                |        | RM      |
|--------------------------------|--------|---------|
| Completed Unit (1,400 x RM 70) | N.     | 98,000  |
| Abnormal Loss (40 x RM 70)     |        | 2,800   |
| Closing Work in progress:      |        |         |
| Material (345 x RM 40)         | 13,800 |         |
| Labour (230 x RM 20)           | 4,600  |         |
| Overhead (230 x RM 10)         | 2,300  | 20,700  |
|                                |        | 121,500 |

| Process Account   |       |     |         |                    |       |     |         |  |
|-------------------|-------|-----|---------|--------------------|-------|-----|---------|--|
|                   | Qty   | CPU | RM      |                    | Qty   | CPU | RM      |  |
| Input             | 2,000 |     | 58,000  | Normal loss        | 100   | 10  | 1,000   |  |
| Material<br>added |       |     | 14,400  | Abnormal<br>loss   | 40    | 70  | 2,800   |  |
| Labour            |       |     | 33,400  | Output<br>Transfer | 1,400 | 70  | 98,000  |  |
| Overhead          |       |     | 16,700  | CWIP c/d           | 460   |     | 20,700  |  |
|                   | 4,000 | -   | 122,500 |                    | 2,000 | -   | 122,500 |  |

#### 2.4 PROCESS COSTING WITH OPENING AND CLOSING WORK IN PROGRESS

## **OPENING AND CLOSING WORK IN PROGRESS**

Since the production is a continuous activity there is possibility of opening as well as closing work in progress.

The procedure of conversion of opening WIP will vary depending on the method of apportionment of costs followed **AVERAGE COST METHOD** and **FIFO**.

| DIFFERENCES DETWE                      |                                                                                                   |                                                                                                           |
|----------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
|                                        | WEIGTED AVERAGE                                                                                   | FIFO                                                                                                      |
| Units Completed<br>and transferred out | Total units completed<br>this period                                                              | Total units finished from<br>Opening WIP + Units<br>started and completed<br>this period                  |
| Equivalent Units<br>based on           | Units completed this<br>period + Units in Closing<br>WIP                                          | Units form Opening WIP<br>+ Units started and<br>completed + Closing<br>WIP                               |
| Cost per Equivalent<br>Units based on  | Opening WIP Costs +<br>Cost added this period                                                     | Costs added this period only                                                                              |
| Assign costs using                     | Equivalent Units x Cost<br>per Equivalent Units for<br>units complete and<br>units in closing WIP | Opening WIP +<br>(Equivalent Units x Cost<br>per equivalent units for<br>OWIP, Units started and<br>CWIP) |

#### DIFFERENCES BETWEEN WEIGHTED AVERAGE METHOD AND FIFO METHOD

#### 2.4.1 Opening and Closing Work in Progress without Any Process Loss or Gain

#### EXAMPLE 2.5 AVERAGE METHOD

Prepared a statement of equivalent production, statement of cost, process account from the following information using the average method:

|                                      | Quantity      | RM            |
|--------------------------------------|---------------|---------------|
| Opening Stock                        | 50,000 units  |               |
| Material                             |               | RM 25,000     |
| Labour                               |               | RM 10,000     |
| Overhead                             |               | RM 25,000     |
|                                      |               |               |
| Unit Introduced                      | 200,000       |               |
|                                      | units         |               |
| Material                             |               | RM 100,000    |
| Labour                               |               | RM 75,000     |
| Overhead                             |               | RM 70,000     |
|                                      |               |               |
| During the period, 60 000 units were | completed and | d transferred |
| to Process B.                        |               |               |
| Closing stock                        | 100,000       |               |
|                                      | units         |               |
| Degree of completion:                |               |               |
| Material                             |               | 100%          |
| Labour                               |               | 50%           |
| Overhead                             |               | 40%           |

#### SOLUTION:

#### **STEP 1: Find the WIP unit**

|                                | Unit      |
|--------------------------------|-----------|
| Opening stock                  | 50,000    |
| Unit Introduce                 | 200,000   |
|                                | 250,000   |
| (-) Closing Stock              | (100,000) |
| Unit Completed and transferred | 150,000   |

| Output            |         | EQUIVALENT UNIT |              |        |           |          |           |  |
|-------------------|---------|-----------------|--------------|--------|-----------|----------|-----------|--|
| Outp              | ul      | Μ               | aterial      | Labour |           | Overhead |           |  |
|                   | Units   | %               | Equ.<br>unit | %      | Equ. unit | %        | Equ. unit |  |
| OWIP              | 50,000  | -               | -            | -      | -         | -        | -         |  |
| Unit<br>completed | 150,000 | 100             | 150,000      | 100    | 150,000   | 100      | 150,000   |  |
| CWIP              | 100,000 | 100             | 100,000      | 50     | 50,000    | 40       | 40,000    |  |
|                   |         |                 | 250,000      |        | 200,000   |          | 190,000   |  |

# **STEP 2: Statement of Equivalent Production**

#### **STEP 3: Statement of Cost**

| ELEMENT<br>OF COST | COST (RM) |         | EQUIVALENT<br>UNIT | COST PER EQUIVALENT<br>UNIT (RM) |
|--------------------|-----------|---------|--------------------|----------------------------------|
|                    | OWIP      | CURRENT |                    |                                  |
| Material           | 25,000    | 100,000 | 250,000            | 0.5                              |
| Labour             | 10,000    | 75,000  | 200,000            | 0.425                            |
| Overhead           | 25,000    | 70,000  | 190,000            | 0.5                              |
|                    | 60,000    | 245,000 |                    | 1.425                            |

#### **STEP 4: Statement of Evaluation**

|                                     |        | RM      |
|-------------------------------------|--------|---------|
| Completed Unit (150,000 x RM 1.425) |        | 213,750 |
| Closing WIP:                        |        |         |
| Material (100,000 x RM 0.50)        | 50,000 |         |
| Labour (50,000 x RM 0.425)          | 21,250 |         |
| Overhead (40,000 x RM 0.50)         | 20,000 | 91,250  |
|                                     |        | 305,000 |

| Process Account |         |     |         |                    |         |       |         |
|-----------------|---------|-----|---------|--------------------|---------|-------|---------|
|                 | Qty     | CPU | RM      |                    | Qty     | CPU   | RM      |
| OWIP b/d        | 50,000  |     | 60,000  | Output<br>Transfer | 150,000 | 1.425 | 213,750 |
| Material        | 200,000 | 0.5 | 100,000 | CWIP<br>c/d        | 100,000 |       | 91,250  |
| Labour          |         |     | 75,000  |                    |         |       |         |
| Overhead        |         |     | 70,000  |                    |         |       |         |
|                 | 250,000 |     | 305,000 |                    | 250,000 |       | 305,000 |

## EXAMPLE 2.6 FIRST IN FIRST OUT

From the following details prepare a statement of equivalent production and statement of cost.

|                                        | Quantity      | RM          |  |
|----------------------------------------|---------------|-------------|--|
| Opening Stock                          | 10,000 units  |             |  |
| Material (100% completed)              |               | RM 6,500    |  |
| Labour (50% completed)                 |               | RM 3,000    |  |
| Overhead (50% completed)               |               | RM 2,500    |  |
| Unit Introduced                        | 9,000 units   |             |  |
| Material                               |               | RM 112,500  |  |
| Labour                                 |               | RM 89,000   |  |
| Overhead                               |               | RM 43,500   |  |
| During the period, 8 000 units were of | completed and | transferred |  |
| to next process.                       |               |             |  |
| Closing stock                          | 2,000 units   |             |  |
| Degree of completion:                  |               |             |  |
| Material                               | Material 100% |             |  |
| Labour                                 | 70%           |             |  |
| Overhead                               | 60            | %           |  |

#### SOLUTION:

#### **STEP 1: Find the WIP unit**

|                                | Quantity |
|--------------------------------|----------|
|                                | (unit)   |
| Opening stock                  | 1,000    |
| Unit Introduce                 | 9,000    |
|                                | 10,000   |
| (-) Closing Stock              | (2,000)  |
| Unit Completed and transferred | 8,000    |

| Outpu             | EQUIVALENT UNIT |          |           |        |           |          |           |
|-------------------|-----------------|----------|-----------|--------|-----------|----------|-----------|
| Outpu             | L               | Material |           | Labour |           | Overhead |           |
|                   | Units           | %        | Equ. unit | %      | Equ. unit | %        | Equ. unit |
| OWIP              | 1,000           | 100      | (1,000)   | 50     | (500)     | 50       | (500)     |
| Unit<br>completed | 8,000           | 100      | 8,000     | 100    | 8,000     | 100      | 8,000     |
| CWIP              | 2,000           | 100      | 2,000     | 70     | 1,400     | 60       | 1,200     |
|                   |                 |          | 9,000     |        | 8,900     |          | 8,700     |

# **STEP 2: Statement of Equivalent Production**

### **STEP 3: Statement of Cost**

| ELEMENT<br>OF COST | COST (RM) | EQUIVALENT<br>UNIT | COST PER<br>EQUIVALENT UNIT<br>(RM) |
|--------------------|-----------|--------------------|-------------------------------------|
| Material           | 112,500   | 9,000              | 12.50                               |
| Labour             | 89,000    | 8,900              | 10.00                               |
| Overhead           | 43,500    | 8,700              | 5.00                                |
|                    | 245,000   |                    | 27.50                               |

### **STEP 4: Statement of Evaluation**

|                             |        | RM      |
|-----------------------------|--------|---------|
| Completed RM (Actual Output |        |         |
| transferred)                |        | 212,000 |
| OWIP + Current Cost - CWIP  |        |         |
| 12,000 + 245,000 - 45,000   |        |         |
| Closing WIP:                |        |         |
| Material (2,000 x RM 12.50) | 25,000 |         |
| Labour (1,400 x RM 10.00)   | 14,000 |         |
| Overhead (1,200 x RM 5.00)  | 6,000  | 45,000  |
|                             |        | 257,000 |

| Process 1 Account |        |       |         |                    |        |     |         |  |  |
|-------------------|--------|-------|---------|--------------------|--------|-----|---------|--|--|
|                   | Qty    | CPU   | RM      |                    | Qty    | CPU | RM      |  |  |
| OWIP b/d          | 1,000  | 12    | 12,000  | Output<br>Transfer | 8,000  |     | 212,000 |  |  |
| Material          | 9,000  | 12.50 | 112,500 | CWIP<br>c/d        | 2,000  |     | 45,000  |  |  |
| Labour            |        |       | 89,000  |                    |        |     |         |  |  |
| Overhead          |        |       | 43,500  |                    |        |     |         |  |  |
|                   | 10,000 | _     | 257,000 |                    | 10,000 |     | 257,000 |  |  |

#### 2.4.2 Opening and Closing Work in Progress with Any Process Loss or Gain

Adjustments are made for normal loss, abnormal loss and abnormal gain in calculation of equivalent point

Normal spoilage cost is borne by the good units produced.

Abnormal loss units are valued like good units.

## EXAMPLE 2.7 AVERAGE METHOD

The following information is available on Process B for the period 30 June 2018:

|                                               | kg     | RM           |
|-----------------------------------------------|--------|--------------|
| Opening WIP                                   | 50     | 510          |
| Transferred from Process A                    |        | 250          |
| Direct material                               | -      | 125          |
| Direct labour                                 | -      | 105          |
| Factory overhead                              | -      | 30           |
| Cost incurred during the period:              |        |              |
| Transfer from Process A                       | 750    | 8 000        |
| Material added                                | 100    | 41.50 per kg |
| Labour                                        |        | 2 250        |
| Overhead                                      |        | 1 500        |
| Closing WIP                                   |        | 100 kg       |
| Degree of completion : Material               | 100%   |              |
| Labour                                        | 60%    |              |
| Overhead                                      | 40%    |              |
| Normal loss is 75 kg with scrap value of RM 2 | per kg |              |
| Transfer to next process 775 kg               |        |              |

#### SOLUTION:

### **STEP 1: Determine abnormal loss or abnormal gain**

|                                    | Quantity<br>(unit) |
|------------------------------------|--------------------|
| Opening WIP                        | 50                 |
| Input from Process A               | 750                |
| Material added                     | 100                |
|                                    | 900                |
| (-) Closing WIP                    | (100)              |
| Total Output                       | 800                |
| (-) Normal Loss                    | (75)               |
| Normal Output / Production         | 725                |
| (-) Actual Output (Unit Completed) | (775)              |
| Abnormal Gain                      | (50)               |

### **STEP 2: Statement of Equivalent Production**

| Output                  |       | EQUIVALENT UNIT |      |             |      |        |      |          |      |
|-------------------------|-------|-----------------|------|-------------|------|--------|------|----------|------|
|                         |       | Material P1     |      | Material P2 |      | Labour |      | Overhead |      |
|                         | Units | %               | EQ   | %           | EQ   | %      | EQ   | %        | EQ   |
| Unit<br>completed       | 775   | 100             | 775  | 100         | 775  | 100    | 775  | 100      | 775  |
| CWIP                    | 100   | 100             | 100  | 100         | 100  | 60     | 60   | 40       | 40   |
| (-)<br>Abnormal<br>Gain | 50    | 100             | (50) | 100         | (50) | 100    | (50) | 100      | (50) |
|                         |       |                 | 825  |             | 825  |        | 785  |          | 765  |

Abnormal gain is always fully processed and is deducted from equivalent production unit of each element.

| ELEMENT OF<br>COST | COS    | T (RM)  | EQUIVALENT<br>UNIT | COST PER UNIT<br>(RM) |  |  |
|--------------------|--------|---------|--------------------|-----------------------|--|--|
|                    | OWIP   | CURRENT |                    |                       |  |  |
| Transfer from P1   | 250    | 8,000   | 825                | 10                    |  |  |
| Material added     | 125    | 4,000   | 825                | 5                     |  |  |
| Labour             | 105    | 2,250   | 785                | 3                     |  |  |
| Overhead           | 30     | 1,500   | 765                | 2                     |  |  |
|                    | 16,260 |         |                    | 20                    |  |  |

#### STEP 3: Statement of Cost

|                                                          |                                       | RM    |
|----------------------------------------------------------|---------------------------------------|-------|
| Material Process II                                      | · · · ·                               | 4 150 |
| (-) Normal Loss (unit x scrap value)<br>(75 unit x RM 2) | · · · · · · · · · · · · · · · · · · · | (150) |
| Total Cost                                               |                                       | 4 000 |

Scrap value of normal loss in deducted from the direct material cost

#### **STEP 4: Statement of Evaluation**

|                                          |       | RM      |
|------------------------------------------|-------|---------|
| Actual Output transferred to Process III |       | 15,500  |
| (775 x RM 20)                            |       |         |
|                                          |       |         |
| Closing WIP: Material P1 (100 x RM 10)   | 1,000 |         |
| Material PII (100 x RM 5)                | 500   |         |
| Labour (60 x RM 3)                       | 180   |         |
| Overhead (40 x RM 2)                     | 80    | 1,760   |
|                                          |       |         |
| Less : Abnormal Gain                     |       |         |
| Material Process I [50 x RM 10]          | 500   |         |
| Material Process II [50 x RM 5]          | 250   |         |
| Labour [50 x RM 3]                       | 150   |         |
| Overhead [50 x RM 2]                     | 100   | (1,000) |
|                                          |       | 16,260  |

| Process 2 Account |     |     |        |                    |     |     |        |  |
|-------------------|-----|-----|--------|--------------------|-----|-----|--------|--|
|                   | Qty | CPU | RM     |                    | Qty | CPU | RM     |  |
| OWIP              | 50  |     | 510    | Normal<br>loss     | 75  | 2   | 150    |  |
| Transfer<br>P1    | 750 |     | 8,000  | Output<br>Transfer | 775 | 20  | 15,500 |  |
| Material<br>added | 100 |     | 4,150  | CWIP<br>c/d        | 100 |     | 1,760  |  |
| Labour            |     |     | 2,250  |                    |     |     |        |  |
| Overhead          |     |     | 1,500  |                    |     |     |        |  |
| Abnormal<br>Gain  | 50  |     | 1,000  |                    |     |     |        |  |
|                   | 950 | -   | 17,410 |                    | 950 | _   | 17,410 |  |

### EXAMPLE 2.8 FIRST IN FIRST OUT

The following information relates to Process II for the period ending June 2019.

|                                    | Unit   | RM      |
|------------------------------------|--------|---------|
| Opening Stock                      | 1 000  | 14 400  |
| Transferred from Process I         | 42 600 | 330 890 |
| Direct material used in Process II | -      | 160 693 |
| Direct labour                      | -      | 79 240  |
| Factory overhead                   | -      | 39 620  |
| Unit scrapped                      | 2 200  |         |
| Transfer to Process III            | 37 800 |         |
| Closing stock                      | 3 600  |         |

Degree of completion:

|          | <b>Opening Stock</b> | <b>Closing Stock</b> | Scrap |
|----------|----------------------|----------------------|-------|
| Material | 70%                  | 80%                  | 100%  |
| Labour   | 50%                  | 60%                  | 80%   |
| Overhead | 50%                  | 60%                  | 80%   |

There was a normal loss of 5% of production and units scrapped were sold at RM 3 each.

You are required to show all the relevant statement and Process II Account.

# SOLUTION:

# STEP 1: Determine abnormal loss or abnormal gain

|                                                           | Quantity<br>(unit) |
|-----------------------------------------------------------|--------------------|
| Opening WIP                                               | 1 000              |
| Input from Process I                                      | 42 600             |
|                                                           | 43 600             |
| (-) Closing WIP                                           | (3 600)            |
| Total Output                                              | 40 000             |
| (-) Normal Loss (5% of production)<br>(5% x 40 000 units) | (2 000)            |
| Normal Output / Production                                | 38 000             |
| (-) Actual Output (Unit Completed)                        | (37 800)           |
| Abnormal Loss                                             | 200                |

### **STEP 2: Statement of Equivalent Production**

| Outou     | .+     | EQUIVALENT UNIT |            |             |        |        |        |          |        |  |
|-----------|--------|-----------------|------------|-------------|--------|--------|--------|----------|--------|--|
| Οιτραί    |        | Material P1     |            | Material P2 |        | Labour |        | Overhead |        |  |
|           | Units  | %               | EQ         | %           | EQ     | %      | EQ     | %        | EQ     |  |
| OWIP      | 1,000  | 100             | [1 000]    | 70          | [700]  | 50     | [500]  | 50       | [500]  |  |
| Unit      | 37 800 | 100             | 37 800     | 100         | 37 800 | 100    | 37 800 | 100      | 37 800 |  |
| completed | 57,000 | 100             | 100 37,800 | 100         | 57,800 | 100    | 57,000 | 100      | 57 800 |  |
| CWIP      | 3,600  | 100             | 3,600      | 80          | 2,880  | 60     | 2,160  | 60       | 2,160  |  |
| Abnormal  | 200    | 100             | 200        | 100         | 200    | 80     | 160    | 80       | 160    |  |
| Loss      | 200    | 100             | 200        | 100         | 200    | 00     | 100    | 00       | 100    |  |
|           |        |                 | 40,600     |             | 40,180 |        | 39,620 |          | 39,620 |  |

#### **STEP 3: Statement of Cost**

Scrap value of normal loss in deducted from the direct material cost.

#### **STEP 4: Statement of Evaluation**

|                                            |        | RM      |
|--------------------------------------------|--------|---------|
| Actual Output transferred to Process III   |        |         |
| OWIP + Current Cost – CWIP – Abnormal Loss |        |         |
| [14,400 + 604,443] - 46,908 - 2,880        |        | 569,055 |
| Abnormal Loss :                            |        |         |
| Material Process I [200 x 8.15]            | 1,630  |         |
| Material Process II [200 x 3.85]           | 770    |         |
| Labour [160 x RM 2]                        | 320    |         |
| Overhead [160 x RM 1]                      | 160    | 2,880   |
|                                            |        |         |
| Closing WIP:                               |        |         |
| Material P1 (3 600 x RM 8.15)              | 29,340 |         |
| Material PII (2 880 x RM 3.85)             | 11,088 |         |
| Labour (2 160 x RM 2)                      | 4,320  |         |
| Overhead (2 160 x RM 1)                    | 2,160  | 46,908  |
|                                            |        | 618,843 |

| STEP 5 | Process | Account |
|--------|---------|---------|
|--------|---------|---------|

| Process Account |        |     |         |                    |        |     |         |
|-----------------|--------|-----|---------|--------------------|--------|-----|---------|
|                 | Qty    | CPU | RM      |                    | Qty    | CPU | RM      |
| OWIP            | 1 000  |     | 14 400  | Normal<br>loss     | 2 000  | 3   | 6 000   |
| Material P1     | 42 600 |     | 330 890 | Abnormal<br>loss   | 200    |     | 2 880   |
| Material P2     |        |     | 160 693 | Output<br>Transfer | 37 800 |     | 569 055 |
| Labour          |        |     | 79 240  | CWIP c/d           | 3 600  |     | 46 908  |
| Overhead        |        |     | 39 620  |                    |        |     |         |
|                 | 43,600 |     | 624,843 |                    | 43,600 |     | 624,843 |
|                 |        |     |         | 1                  |        |     |         |

#### **ENHANCEMENT EXERCISE 2.1**

The following data is provided by Tom and Jerry Corporation's Mixing department for the 1000 units of product still in the work - in - progress at the end of the period. Assume there was no beginning inventory.

| Direct materials | 90% complete |
|------------------|--------------|
| Direct labour    | 30% complete |
| Overhead         | 60% complete |

Calculate the equivalent units for each of the three product costs – direct materials, direct labour and overhead.

#### **ENHANCEMENT EXERCISE 2.2**

Hassan Onn Ltd. manufactures a "Mes" product in Departments K and B. The following are the data for department B for the month of July 2019:

|                                       | Unit   | RM     |
|---------------------------------------|--------|--------|
| From Department K                     | 20 000 | 20 000 |
| Material added                        |        | 5 000  |
| Labour                                |        | 13 600 |
| Overhead                              |        | 20 400 |
| Unit Completed                        | 15 000 |        |
| Closing Work in progress              | 5 000  |        |
| Degree of completion: Direct Material | 100%   |        |
| Direct Labour                         | 40%    |        |
| Overhead                              | 40%    |        |

Show the unit produced and cost.

Answers:



# PRACTICE QUESTIONS

- DAISY SDN BHD
- BAKING DEPT
- WAKAWAKA BHD
- MAA SDN BHD
- PALMA BHD
- SERBAGUNA SDN BHD
- DELIMA PINK SDN BHD

# **ANSWERS:**



# **PRACTICE QUESTIONS**

QUESTION 1 Daisy Sdn Bhd

|                                                | Unit  | RM     |
|------------------------------------------------|-------|--------|
| Opening Stock                                  | 200   |        |
| Degree of completion in OWIP                   |       |        |
| Material                                       | 100%  | 2 000  |
| Labour                                         | 20%   | 400    |
| Overhead                                       | 20%   | 400    |
|                                                |       |        |
| Unit started into production during the period | 1 800 |        |
| Cost added during the period:                  |       |        |
| Material                                       |       | 18 360 |
| Labour                                         |       | 19 845 |
| Overhead                                       |       | 19 467 |
|                                                |       |        |
| Closing Work in progress                       | 100   |        |
| Degree of completion:                          |       |        |
| Direct Material                                | 100%  |        |
| Direct Labour                                  | 30%   |        |
| Overhead                                       | 30%   |        |

You are required to show all the relevant statement and the Process Account

## **QUESTION 2** Baking Department of Traditional Cakes Enterprise

The data for Baking Department of Traditional Cakes Enterprise goes through two processes: A and B. For the month of April 2019, the following information applies to Process A.

|               |             | RM    |
|---------------|-------------|-------|
| Raw materials | 1 000 units | 5 000 |
| Labour        |             | 2 700 |
| Overhead      |             | 1 800 |

There were no normal losses in the process.

The details of the closing work in progress are as follows:

| Closing WIP           | 200 units     |
|-----------------------|---------------|
| Degree of completion: |               |
| Direct Material       | 100% complete |
| Direct Labour         | 50% complete  |
| Overhead              | 50% complete  |

You are required to show all the relevant statement and the Process A Account for the month of April.

#### QUESTION 3 WAKAWAKA BHD

WAKAWAKA Bhd manufactured a product. Assuming there are now partcompleted bars at the end of the month (work in progress). The below was the data for Process 2:

Opening stock

100 unit

Degree of completion in OWIP

|          | Degree | RM  |
|----------|--------|-----|
| Material | 100%   | 235 |
| Labour   | 60%    | 270 |
| Overhead | 40%    | 250 |

Unit started into production during the period 3 500 unit

| Cost added during the period: | RM    |
|-------------------------------|-------|
| Material                      | 8 750 |
| Labour                        | 3 509 |
| Overhead                      | 2 889 |

#### Closing Work in Progress

500 unit

| Degree of completion: |      |
|-----------------------|------|
| Direct Material       | 100% |
| Direct Labour         | 30%  |
| Overhead              | 30%  |

Using the First In First Out Method, you are required to show:

- (a) Productions cost per unit
- (b) Cost of closing work in progress
- (c) Process Account

#### QUESTION 4 MAA Sdn Bhd

MAA Sdn Bhd manufactured a product in one process. Process costing is followed by and WIP stocks at the end of each month are valued on a FIFO basis. The stock of work in progress was **2 000 units** (40 % completed) at the beginning of January 2018, and it was valued at:

|               | RM     |
|---------------|--------|
| Materials     | 18 000 |
| Direct labour | 17 000 |
| Overhead      | 5 300  |

In the month of Jan, actual issue of materials for the production purpose was RM 342 500. Wages and overhead amounted to RM 402 600 and RM 112 200 respectively. Finished goods in stock for the month was **12 500** units. There was no loss in process.

At the end of the month, WIP inventory was **2 500** units, 60% complete as to labour and overhead and 80% complete as to materials.

Prepare the following statement for the Jan 2018.

- a) No of unit introduced in the process
- b) Statement of equivalent
- c) Statement of cost Production
- d) Statement of Evaluation
- e) Process Account

#### **QUESTION 5** Palma Bhd

The refining department of Palma Bhd has the following production results for August 2018:

| Opening WIP 2 000 ui            |              |
|---------------------------------|--------------|
| Degree of completion:           |              |
| Material                        | 100%         |
| Labour                          | 60%          |
| Overhead                        | 40%          |
|                                 |              |
| Units introduced                | 10 000 units |
| Unit completed (finished goods) | 9 000 units  |
| Closing WIP                     | 3 000 units  |
| Degree of completion:           |              |
| Material                        | 100%         |
| Labour                          | 70%          |
| Overhead                        | 60%          |

Cost information are:

|                          | Material<br>(RM) | Labour<br>(RM) | Overhead<br>(RM) |
|--------------------------|------------------|----------------|------------------|
| Opening Work in Progress | 2,800            | 2,205          | 800              |
| Cost for this month      | 20 000           | 15 000         | 10 000           |

Using the **Average Cost Method**, you are required to show:

- a) Productions cost per unit
- b) Cost of closing work in progress
- c) Process Account

#### **QUESTION 6** Serbaguna Sdn Bhd

Serbaguna Sdn Bhd is produced by two different processes: 1 and 2. For the month of April 2018, the following information relates to Process 1. There were 700 units of opening WIP at the start of the period. The below are the degree of completion and costs:

|               |      | RM    |
|---------------|------|-------|
| Raw materials | 100% | 3 350 |
| Labour        | 40%  | 900   |
| Overhead      | 70%  | 3 500 |

During the month of April, the following costs were incurred:

|                                 | RM     |
|---------------------------------|--------|
| 3 500 units of direct materials | 25 896 |
| Direct labour                   | 7 602  |
| Overhead                        | 8 040  |

At the end of April, 600 units of closing WIP with the following degree of completion were realised:

|               | %  |
|---------------|----|
| Materials     | 70 |
| Direct labour | 50 |
| Overhead      | 40 |

There was no loss in the process.

#### **Required:**

Prepared the relevant statements and the Process 1 account for the month of April 2018, using FIFO Method and AVCO Method.

#### **QUESTION 7** Delima Pink Bhd

Delima Pink Bhd produces an item which goes through 3 processes. In September 2018, the data for Process 1 was:

| Opening W | /IP 10 000 units |        |
|-----------|------------------|--------|
|           |                  | RM     |
|           | Direct materials | 40 000 |
|           | Direct labour    | 16 000 |
|           | Overhead         | 12 000 |

Unit input was 60 000 units and cost incurred during the process was:

|                  | RM      |
|------------------|---------|
| Direct materials | 212,000 |
| Direct labour    | 105,200 |
| Overhead         | 75,300  |

Output transferred to the next process was 50 000 units

Normal loss is 10% of input and loss is expected at the end of the Process 1.

Closing WIP12 000 unitsDegree of completionMaterials100%Direct labour80%Overhead60%

Using the **AVCO Method**, you are required to:

- (a) Determine (in unit) whether abnormal loss or abnormal gain
- (b) Calculate the total equivalent unit and cost per unit for material, direct labour and overhead.
- (c) Prepare Statement of cost Production, Statement of Evaluation and Process Account



Das, P. (2016). Cost Accounting (15st ed.) Malaysia : Oxford University Press

- Drury, C(2018). *Management and Cost Accounting* (10<sup>th</sup> ed.). Singapore: Cengage Learning EMEA.
- Nor Aziah, et.al (2011). *Management Accounting* (1<sup>st</sup> ed.). Malaysia : Oxford.
- Rozainun Abdul Aziz, C.H (2018). *Management Accounting* (3<sup>rd</sup> ed.). Malaysia: Oxford University Press.

# **ABOUT THE AUTHORS**



Samsinor binti Ibrahim is an Accounting Lecturer at Department, Politeknik Commerce Merlimau Melaka. She holds a Master Degree in TVET Education from KUITTHO and Degree in Accounting from Universiti Utara Malaysia. She also has teaching extensive experience accounting courses, which specialization in Cost & Management Accounting, Economics, Taxation and Financial Accounting.



Nur 'Abidah binti Solihuddin is an accounting Lecturer at Commerce Department, Politeknik Degree Merlimau Melaka. She holds а of Accounting from Universiti Teknologi MARA. She also has extensive experience teaching accounting which specialization in Cost courses, & Management Accounting, Auditing and Financial Accounting.



Norhazma binti Nafi is an Accounting Lecturer at Politeknik Commerce Department, Merlimau Melaka. She holds a Master Degree of Accounting from Universiti Teknologi MARA and a Degree of Accounting from Universiti Utara Malaysia. She also has extensive experience teaching accounting specialization which in Cost courses, & Management Accounting, Auditing and Financial Accounting.

