THERMODYNAMIC

SECOND LAW

NOR HISHAM | NOOR MAYAFARANIZA

©ePembelajaran Politeknik Merlimau

Writer Nor Hisham Sulaiman Noor Mayafaraniza Kosnan

Published in 2021

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanic methods, without the prior written permission of the writer, except in the case of brief quotations embodied in reviews and certain other non-commercial uses.

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

Nor Hisham

THERMODYNAMIC : SECOND LAW / NOR HISHAM, NOOR MAYAFARANIZA. Mode of access: Internet eISBN 978-967-2241-93-5

- 1. Thermodynamics.
- 2. Second law of thermodynamics.
- 3. Government publications--Malaysia.
- 4. Electronic books.
- I. Noor Mayafaraniza. II. Title. 536.7

Published by: Politeknik Merlimau, Melaka KB1031 Pej Pos Merlimau, 77300 Merlimau Melaka

EDITORIAL BOARD

Managing Editor

Ts Dr. Maria binti Mohammad Rosheela binti Muhammad Thangaveloo Nisrina binti Abd Ghafar Azrina binti Mohmad Sabiri Zuraida bt Yaacob Raihan binti Ghazali

Editor Khadijah Mohd Zainuddin (Head of Programme) Mohamad Shahril Ibrahim (Senior Lecturer)

> **Designer** Kamisah Kamis Mohamad Shahril Ibrahim

Proofreading & Language Editing: Nor Fazila binti Shamsuddin Maisarah binti Abdul Latif Rosheela binti Muhammad Thangaveloo

PREFACE

This books aims to students of mechanical engineering at explaining the basic concepts of thermodynamics related to heat, work, energy transformation, the characteristics for a specific thermodynamics process and contains sufficient examples to support the concepts.

The entire book is written in a simple way to enable the students understand the concepts quickly and the subject is an easy way. This book shall provide knowledge on the theory, concept and application of formula and to acquire the problem solving skills related to the respective processes.

PREFACE

REFERENCES

FUNDAMENTAL CONCEPTS OF THERMODYNAMICS	
DEFINITION OF THERMODYNAMICS	1
FUNDAMENTAL UNITS (SI)	2
DIMENSIONAL HOMOGENEITY	2
DERIVED UNITS	3
PHYSICAL QUANTITIES	4
BASIC TERM IN THERMODYNAMIC	5
PROPERTIES OF SYSTEMS	6
PROCESS, CYCLES AND STATE	7
REVERSIBLE PROCESS	8
IRREVERSIBLE PROCESS	8
STATE AND EQUILIBRIUM	9
ZEROTH LAW OF THERMODYNAMICS	10
WORK TRANSFER, W	10
HEAT TRANSFER, Q	n
MECHANISMS OF HEAT TRANSFER	11
SIGN CONVENTION FOR WORK TRANSFER	12
SIGN CONVENTION FOR HEAT TRANSFER	12
INTERNAL ENERGY, U	13
SECOND LAW OF THERMODYNAMICS	
DEFINITION OF SECOND LAW THERMODYNAMICS	15
HEAT ENGINE	16
REVERSE HEAT ENGINE	19
CARNOT CYCLE	23
RANKINE CYCLE	27
STEAM TABLE	33

TABLE OF CONTENT

40

DEFINITION OF THERMODYNAMICS

A study about the relation between heat energy, works and the component which is all the heat energy will be converted to the works in the heat engine.

Thermodynamic:

Therme (thermo) - heat Dynamic – mechanical movement

FUNDAMENTAL UNITS (SI)

Quantity	Unit
1. Mass, m	Kilogram (kg)
2. Time, t	Second(s)
3. Length, 1	Meter (m)
4. Temperature, T	Kelvin (K)
_	0°C = 273K
5. Electric Current, I	Ampere (A)
6. Luminous Intensity, Iv	Candela (cd)

DIMENSIONAL HOMOGENEITY

In engineering, all equations must be dimensionally homogenous. That is, every term in an equation must have the same unit.

Answer: You can't add apples and oranges!!!

IMPERIAL UNITS

Category	Name of Unit	Measu	e
Length	Inch	1/12th	ft
	Foot	1	ft
	Yard	3	ft
	Mile	5280	ft
	Nautical mile	6080	ft
Area	Acre	43,560	sq ft
Volume	Fluid ounce	1/20th	pint
	Pint	1	pint
	Quart	2	pint
	Gallon	8	pint
Weight	Ounce	1/16 th	1b
	Pound	1	1b
	Stone	14	1b
	Ton	2240	1b

METRIC CONVERSIONS

1in	= 25.4mm
1ft	= 305mm
1yd	= 0.914m
1 mile	= 1.61km
1 lb (pound)	= 454g
1 oz	= 28.3g

DERIVED UNITS

No.	Quantity	Symbol (Unit)	Statement
1	Area	A (m ²)	
2	Volume	V (m ³)	1m ³ = 1000L
3	Velocity	C (m/s)	
4	Acceleration	a (m/s²)	
5	Density	$\rho (kg/m^3)$	$\rho = \frac{m}{v}$; m = mass, v = volume
6	Force	F (N)	$F = ma = kg.m/s^2$
7	Pressure	$P(N/m^2) = Pa$	$1 \text{ bar} = 10^5 \text{ N}/\text{m}^2$
8	Heat	Q (Joule)	1 Joule = 1Nm
9	Work	W (Joule)	1 Joule = 1Nm
10	Entropy	s	kJ/ kg.K
11	Internal Energy	u	kJ/ kg
12	Enthalpy	h	kJ/ kg
13	Molecular weight of gas	М	kg/kmol
14	Molecular gas constant	R _o = 8.3144	kg/kmol.K
15	Gas constant	R	kJ/kg.K

PHYSICAL QUANTITIES

- 1. Force
- Formula, F = ma
- Unit: Newton (N)
- SI Unit: 1 N = 1 kg.m/s²
- 2. Energy
- Heat & Work
- Formula: W = F x D
- Unit: Joule © Nm

3. Power

- Power is the rate of energy transfer by or to system
- Formula: P = W/t (J/s)
- Unit: Watt @ Nm/s

4. Pressure

- Pressure is the exerted by a fluid per unit area
- Formula: P = F/A
- Unit: (N/m²), Pa @ bar
- 5. Density
- Density is the mass of substance per unit volume
- Unit: kg/m³

a. 1 cm^2 >> m^2 b. 5.54 mm^3 >> m^3 c. $1.67 \times 10^{-36} \text{Tg}$ >> kg d. 25 g/mm^3 >> kg/m³ e. 500 ml >> m^3 f. 16 m^2 >> m^3 f. 16 m^2 >> m/sh. 10N/cm^2 >> kN/m²

BASIC TERM IN THERMODYNAMICS

System

A quantity of matter or a region in space chosen for study.

Volume or any definite shape.

Divide by two:

i. Open system

ii. Closed system

Boundry

Is the surface of separation between the system and its surrounding.

It's not take participation in any changing of the system

Surroundings

The mass or region outside the system

PROPERTIES OF SYSTEMS

Intensive Properties

Those which are independent of the size or extent of the system Example: temperature (T), pressure (P), density (p).

Extensive Properties

Those whose values depend on the size or extent of the system Example: mass (m), volume (V), internal energy (U).

Properties of Matter							
			and the second s				
Extensive	Volume	100mL	15 mL				
Properties	Mass	99.9347 ø	14.9902 ø				
Intensive	Density	0.999 g/mL	0.999 g/mL				
Properties	Temperature	20°C	20°C				

PROCESS, CYCLES AND STATE

Process

There is a change in any of the properties of the system.

A process is a transformation from one state to another.

Example: Constant temperature (isothermal), Constant pressure (isobar), Constant volume, Polytrophic and adiabatic

Cycle

A system is said to have undergoes a cycle if it returns to its initial state at the end of the process.

That is, for a cycle the initial and final states are identical.

State

The condition of system as describe by its properties.

The state often can be specified by providing the values of a subset of the properties.

Example of process, cycle and state

REVERSIBLE PROCESS

A reversible process is the process in which the system and surrounding can be restored to the initial state from the final state without producing any changes in the thermodynamics properties of the universe.

In the figure, the system has undergone change from state A to state B. If the system can be restored from state B to state A, without any changes, then the process is said to be a reversible process.

In actual practices, the reversible process never occurs, thus it is an ideal or hypothetical process.

IRREVERSIBLE PROCESS

The irreversible process is also called the natural process because all the processes occurring in nature are irreversible processes. The natural process occurs due to the finite gradient between the two states of the system.

Some important points about the irreversible process:

- In the irreversible process the initial state of the system and surroundings cannot be restored from the final state.
- During the irreversible process the various states of the system on the path of change from initial state to final state are not in equilibrium with each other.
- During the irreversible process the entropy of the system increases decisively and it cannot be reduced back to its initial value.

STATE AND EQUILIBRIUM

A state of balance

A system is not in thermodynamic equilibrium unless the condition of all the relevant types of equilibrium are satisfied.

Example: thermal equilibrium, mechanical equilibrium, phase equilibrium, chemical equilibrium.

A closed system reaching thermal equilibrium

ZEROTH LAW OF THERMODYNAMICS

If two bodies are in thermal equilibrium with a third body, they also in thermal equilibrium with each other.

"the zeroth law can be restated as two bodies are in thermal equilibrium if both have the same temperature reading even if they are not in contact."

WORK TRANSFER, W

Work transfer is defined as a product of the force and the distance moved in the direction of the force.

When the boundary is moved inwards the work is done on the system by its surroundings.

Unit : Joule or Nm

HEAT TRANSFER, Q

Heat is a form of energy which crosses the boundary of a system during a change of state produced by the difference in temperature between the system and its surroundings.

Unit : Joule or Nm

MECHANISMS OF HEAT TRANSFER

SIGN CONVENTION FOR WORK TRANSFER

If work energy is transferred from the system to the surroundings, it is donated as positive.

If work energy is transferred from the surroundings to the system, it is donated as negative.

SIGN CONVENTION FOR HEAT TRANSFER

If heat energy flows into the system from the surroundings it is said to be positive.

If heat energy flows from the system to the surroundings it is said to be negative.

INTERNAL ENERGY, U

Sum of all the energies a fluid possesses and stores within itself.

$$\Delta U = \Delta Q - \Delta W$$
$$U2 - U1 = \Delta Q - \Delta W$$

where,

 $\Delta Q =$ Heat supplied to the system

 ΔW = Work done by the system.

 $\Delta U = Change$ in the internal energy of the system.

If Q is positive, then there is a net heat transfer into the system, if W is positive, then there is work done by the system. So positive Q adds energy to the system and positive W takes energy from the system.

Unit:kJ/kg

- Figure above shows a certain process, which undergoes a complete cycle of operations. Determine the value of the work output for a complete cycle, W_{out}.
- A system is allowed to do work amounting to 500 kNm whilst heat energy amounting to 800 kJ is transferred into it. Find the change of internal energy and state whether it is an increase or decrease.

- A system is allowed to do work amounting to 940 kNm whilst heat energy amounting to 480 kJ is transferred into it. Find the change of internal energy and state whether it is an increase or decrease.
 - 1. Sketch a diagram that consists of:
 - i. System
 - ii. Boundary
 - iii. Surroundings
 - 2. Convert the following:
 - i. 2250 km/h to cm/min
 - ii. 45000 Pascal to MN/m²
 - iii. 7 km/h to m/s
 - iv. 35 g/mm³ to kg/m³
 - v. 18 miligram per litre to kg/m³
 - 3. List SIX (6) SI (International System) units and their symbols.
 - 4. Explain the Zeroth Law of Thermodynamics
 - 5. Explain briefly the equilibrium state in thermodynamics.
 - Sketch a simple diagram showing a closed system which is already reaching a thermal equilibrium from the initial state to the final state.

SECOND LAW OF THERMODYNAMICS

Definition of Second Law Thermodynamics

"Although the net heat supplied in a cycle is equal to the net work done; the gross heat supplied must be greater than the work done; some heat must always be rejected by the system "

Definition of Second Law Thermodynamics

"Although the net heat supplied in a cycle is equal to the net work done; the gross heat supplied must be greater than the work done; some heat must always be rejected by the system "

> $Q_{gross} > W_{net}$ $Q_1 - Q_2 = W$ where, Q_2 = heat rejected by system

HEAT ENGINE

A heat engine is a system operating in a complete cycle and developing network from a supply of heat.

Heat engines differ considerably from one another, but all can be characterised by the following:

- i. They receive heat from a high-temperature source (for example solar energy, oil furnace, nuclear reactor, steam boiler, etc.)
- They convert part of this heat to work (usually in the form of a rotating shaft, for example gas turbine, steam turbine, etc.)
- iii. They reject the remaining waste heat to a low-temperature sink (for example the atmosphere, rivers, condenser, etc.)
- iv. They operate on a cycle.

Heat Engine Diagram

Thermal Efficiency of a Heat Engine

The ratio of the net work done in the cycle to the gross heat supplied in the cycle.

$$\eta = \frac{W_{out}}{Q_{in}} = \frac{W_{out}}{Q_H} = \frac{Q_1 - Q_2}{Q_1}$$
$$= 1 - \left(\frac{Q_2}{Q_1}\right) = 1 - \left(\frac{Q_L}{Q_H}\right)$$

Example

Heat is transferred to a heat engine from a furnace at a rate of 80 MW. If the rate of waste heat rejection to a nearby river is 45 MW, determine the net work done and the thermal efficiency for this heat engine.

Solution:

$$W = Q_1 - Q_2 = 80 - 45 = 35 MW$$

$$W = Q_1 - Q_2 = 1 - \left(\frac{Q_2}{Q_1}\right)$$
$$= 1 - \left(\frac{45}{80}\right) = 0.4375$$

- 1. A heat engine performs 200J of work and has an efficiency of 25%. Calculate:
 - i. The heat absorbed by the engine from the hot reservoir.
- ii. The heat expelled by the engine to the cold reservoir.
- 2. A petrol engine produces 6000J of heat from combustion and outputs 1200J of mechanical work for each cycle. Calculate the efficiency of the engine in each cycle.
- **3.** A steam boiler receives 2400 kJ/min of heat and produces 24 kW of power. Determine the heat that is absorbed by the river and the thermal efficiency.

REVERSE HEAT ENGINE

A thermodynamics system operating in a thermodynamics cycle which removes heat from a low temperature medium to a high temperature medium.

Divide by 2:

- i. Heat Pump, HP
- ii. Refrigerator, R

Reverse Heat Engine Diagram

1. Refrigerator

To remove heat from the refrigerated space and to maintain the refrigerated space at low temperature.

Coefficient of Performance, COP_{Ref}

$$COP_{Ref} = \frac{Q_2}{W_{in}} = \frac{Q_L}{W_{in}} = \frac{Q_2}{Q_1 - Q_2} = \frac{Q_L}{Q_H - Q_L}$$
$$COP_{Ref} = \frac{T_2}{T_1 - T_2} = \frac{Q_2}{W_{in}}$$

2. Heat Pump

To maintain a heated space at a high temperature.

Coefficient of Performance, COPhp

$$COP_{HP} = \frac{Q_1}{W_{in}} = \frac{Q_H}{W_{in}} = \frac{Q_1}{Q_1 - Q_2} = \frac{Q_H}{Q_H - Q_L}$$
$$COP_{HP} = \frac{T_1}{T_1 - T_2} = \frac{Q_1}{W_{in}}$$
$$COP_{HP} - COP_{Reff} = 1$$
$$COP_{HP} = COP_{Reff} + 1$$

During the fall and spring: A heat pump pulls heat from outside and moves it into your home. You will need a backup heat source when temperatures are below 30 degrees F, typically mid-December through mid-February.

Example

A food compartment in refrigerator is maintain at 4°C by removing heat from it at a rate of 360kJ/min. if the power input required is 2kW, determine:

- i. the coefficient of performance of the refrigerator, COP_{Ref}
- ii. the rate of heat rejection to surrounding.

Solution:

i)
$$\operatorname{COP}_{\operatorname{Ref}} = ?$$

 $\operatorname{COP}_{\operatorname{Ref}} = \frac{Q_2}{W_{in}} = \frac{6}{2} = 3$

ii)
$$W = Q_1 - Q_2$$

 $Q_1 = W + Q_2$
 $= 2 + 6$
 $= 8 \text{ kJ/s}$
 $= 8 \times 60 = 480 \text{ kJ/min}$

Question

- Heat pump is used to meet the heating requirements of a house and maintain it at 20°C. When the outdoor air temperature drop to -2°C, the house is estimates to lose heat at rate of 80000kJ/h. If the heat pump under these conditions has a coefficient of performance, COP of 2.5, determine:
 - i. The power consumed by heat pump
 - ii. The rate of heat absorbed from outside
- 2. A domestic food freezer maintains a temperature of -10°C. The ambient air temperature is 28°C. If heat leaks into the freezer at the continuous rate of 1.65 kJ/s what is the least power necessary to pump this heat out continuously?

CARNOT CYCLE

From the Second Law of Thermodynamics it can be derived that no heat engine can be more efficient than a reversible heat engine working between the same temperature limits.

Carnot, a French engineer, has shown in a paper written in 1824 that the most efficient possible cycle is one in which all the heat supplied is supplied at one fixed temperature, and all the heat rejected is rejected at a lower fixed temperature.

The cycle therefore consists of two isothermal processes joined by two adiabatic processes.

Since all processes are reversible, then the adiabatic processes in the cycle are also isentropic.

Carnot Cycle

The cycle is most conveniently represented on a T-s diagram as shown in Figure below:

4 to 1: heat supplied to boiler - constant temperature		Q41=(h1-h4)
1 to 2: work out- isentropic $(S_1=S_2)$	-	W12=(h1-h2)
2 to 3: heat loss - constant temperature.	→	Q23=h3-h2
3 to 4: work in - isentropic (S ₃ =S ₄)	-	W ₃₄ =h ₄ -h ₃

Thermal Efficient of Carnot Cycle

$$\begin{split} \eta_{carnot} &= \frac{Net \ work \ output}{Heat \ supplied \ in \ the \ boiler} = \frac{W_{12} - W_{34}}{Q_{41}} \\ \eta_{carnot} &= \frac{(h_1 - h_2) - (h_4 - h_3)}{h_1 - h_4} \\ \eta_{carnot} &= 1 - \frac{T_2}{T_1} \end{split}$$

Work Ratio

Work ratio,
$$\gamma = \frac{Net \ work}{Gross \ work} = \frac{W_{12} - W_{34}}{Q_{41}}$$
$$= \frac{(h_1 - h_2) - (h_4 - h_3)}{h_1 - h_2}$$

Specific Steam Consumption, SSC

$$SSC = \frac{3600}{Net \ work} = \frac{3600}{W_{nett}} = \frac{3600}{W_{12} - W_{34}}$$
$$= \frac{3600}{(h_1 - h_2) - (h_4 - h_3)} \ kg/kWh$$

Example

A steam power plant operates between a boiler pressure of 42 bar and a condenser pressure of 0.035 bar. Calculate for these limits the cycle efficiency and the work ratio for a Carnot cycle using wet steam.

$$\eta_{carnot} = 1 - \frac{T_2}{T_1}$$

$$\eta_{carnot} = 1 - \left(\frac{283}{473}\right) = 0.402$$

 $\eta_{carnot} = 40.2\%$

Question

- A steam power plant operates between a boiler pressure of 40 bar and a condenser pressure of 0.045 bar. Calculate for these limits the cycle efficiency and the work ratio for a Carnot cycle using wet steam.
- A reverse Carnot cycle air conditioner transfers heat from a house at 720 kJ/min to maintain its temperature at 21 °C. The outside temperature is 33.5°C. Find the power required to operate this air conditioner.

RANKINE CYCLE

1 to 2: work out- isentropic $(S_1=S_2)$ \longrightarrow $W_{12}=(h_1-h_2)$ 2 to 3: heat loss - constant temperature. \longrightarrow $Q_{23}=h_3-h_2$ 3 to 4: work in - isentropic $(S_3=S_4)$ \longrightarrow $W_{34}=h_4-h_3$
 $=V_f(P_4-P_3)$

<u>V</u>f≈ 0.001m3/kg

Thermal Efficiency of Rankine Cycle

$$\eta_{R} = \frac{Net \ work \ output}{Heat \ supplied \ in \ the \ boiler} = \frac{W_{12} - W_{34}}{Q_{451}}$$
$$\eta_{R} = \frac{(h_{1} - h_{2}) - (h_{4} - h_{3})}{h_{1} - h_{4}}$$

Work Ratio for Rankine Cycle

Work ratio,
$$\gamma = \frac{Net \ work}{Gross \ work} = \frac{W_{12} - W_{34}}{W_{12}}$$
$$= \frac{(h_1 - h_2) - (h_4 - h_3)}{h_1 - h_2}$$

Specific Steam Consumption, SSC

$$SSC = \frac{3600}{Net \ work} = \frac{3600}{W_{nett}} = \frac{3600}{W_{12} - W_{34}}$$
$$= \frac{3600}{(h_1 - h_2) - (h_4 - h_3)} kg/kWh$$

Example

A steam power plant operates between a boiler pressure of 42 bar and a condenser pressure of 0.035 bar. Calculate for these limits the cycle efficiency, the work ratio, and the specific steam consumption for a Rankine cycle with dry saturated steam at entry to the turbine. Solution:

 $\begin{array}{l} h_1 = h_g \mbox{ pada } P_1 = 42 \mbox{ bar} \\ = 2800 \mbox{ kJ/kg} \end{array}$

$$\label{eq:h_3} \begin{split} h_3 &= h_f \text{ pada } P_2 = 0.035 \text{ bar} \\ &= 112 \text{kJ/kg} \end{split}$$

 $h_2 = h_{f2} + x_2 (h_{fg2})$ = 112 + (0.7)(2438) =1818.6 kJ/kg $s_1 = s_2 = s_g \text{ pada } P_1 = 42 \text{ bar}$ = 6.049 kJ/kgK

$$s_2 = s_{f2} + x_2 (s_{fg2})$$

6.049 = 0.391 + x₂ (8.130)
 $x_2 = 0.7$

 $\begin{array}{l} h_4 =? \\ W_{34} = h_4 - h_3 = V_f (P_4 - P_3) \ ; P_4 = P_1 = 42 \ bar; \ P_3 = P_2 = 0.035 \ bar; \\ W_{34} = 0.001 ((42 \ \mathrm{x} \ 10^2) - (0.035 \ \mathrm{x} \ 10^2)) \\ W_{34} = 4.2 \ \mathrm{kJ/kg} \end{array}$

 $W_{34} = h_4 - h_3$ $h_4 = W_{34} + h_3$ $h_4 = 4.2 + 112$ $h_4 = 116.2 kJ/kg$

$$\eta_R = \frac{W_{12} - W_{34}}{Q_{451}} = \frac{(h_1 - h_2) - (h_4 - h_3)}{h_1 - h_4}$$
$$= \frac{(2800 - 1818.6) - (116.2 - 112)}{2800 - 116.2}$$
$$= 0.364 = 36.4\%$$

 $\gamma = \frac{W_{12} - W_{34}}{Q_{41}}$ $= \frac{(h_1 - h_2) - (h_4 - h_3)}{h_1 - h_2}$ $= \frac{(2800 - 1818.6) - (116.2 - 112)}{2800 - 1818.6}$

$$SSC = \frac{3600}{W_{12} - W_{34}}$$
$$= \frac{3600}{(h_1 - h_2) - (h_4 - h_3)}$$
$$= \frac{3600}{(2800 - 1818.6) - (116.2 - 112)}$$
$$= 3.68 \ kg/kWh$$

Question

1. A steam power plant operates between a boiler pressure of 40 bar and a condenser pressure of 0.045 bar. Calculate for these limits the cycle efficiency, the work ratio, and the specific steam consumption for a Rankine cycle with dry saturated steam at entry to the turbine.

2. A steam power operates between a boiler pressure of 40 bar and condenser pressure of 0.05 bar. Calculate for these limits the cycle efficiency:

i) For a Carnot cycle using wet steam

ii) For a Rankine cycle with dry saturated steam at entry to the turbine.

3. A steam power plant operates in the Rankine cycle with boiler pressure 36 bar and a condenser pressure of 0.045 bar. If the dry saturated steam at entry to the turbine produces the turbine work of 888 kJ/kg and feed pump work of 4.2 kJ/kg, calculate:

i) Heat supplied to the boiler.

- ii) Rankine cycle efficiency
- iii) Work ratio
- iv) Specific steam consumption

Difference of Carnot and Rankine Cycle

NOTATION AND UNITS

a	m/s	 velocity of sound
c_p, \tilde{c}_p	kJ/kg K, kJ/kmol K	-specific, molar heat capacity at constant p
c_v, \tilde{c}_v	kJ/kgK, kJ/kmolK	-specific, molar heat capacity at constant v
g, \tilde{g}	kJ/kg, kJ/kmol	- specific, molar Gibbs function $(h - Ts, \tilde{h} - T\tilde{s})$
$\Delta \tilde{g}^{\bullet}, \Delta g_{f}^{\bullet}$	kJ/kmol	-molar Gibbs function of reaction, of formation
h, ĥ	kJ/kg, kJ/kmol	- specific, molar enthalpy $(u + pv, \tilde{u} + pi?)$
$\Delta \tilde{h}^{\bullet}, \Delta h_{\rm f}^{\bullet}$	kJ/kmol	- molar enthalpy of reaction, of formation
$K^{\rm e}, K_{\rm f}^{\rm e}$	-	- equilibrium constant, of formation
k	kW/m K	- thermal conductivity
ñ	kg/kmol	– molar mass
Р	bar	-absolute pressure
Pr	-	– Prandtl number $(c_p \mu/k)$
R, Ĩ	kJ/kg K, kJ/kmol K	- specific, molar (universal) gas constant
s, ŝ	kJ/kgK, kJ/kmolK	-specific, molar entropy
Т	Kor°C	-absolute temperature (K) or Celsius temperature (°C)
ΔT	K	-temperature interval or difference
u, ũ	kJ/kg, kJ/kmol	- specific, molar internal energy
v, ĩ	m³/kg, m³/kmol	-specific, molar volume $(1/\rho, 1/\tilde{\rho})$
z	m	-geometric altitude above sea level
γ		-ratio of specific heat capacities $(c_p/c_v = \tilde{c}_p/\tilde{c}_v)$
χ	m	-mean free path
μ	$kg/ms = Ns/m^2$	-dynamic viscosity
v	m ² /s	-kinematic viscosity (μ/ρ)
ho, ilde ho	kg/m³, kmol/m³	$-$ mass, molar density (1/v, 1/ \tilde{v})

Subscripts

- c -refers to a property in the critical state
- f -refers to a property of the saturated liquid, or to a value of formation
- g -refers to a property of the saturated vapour
- fg -refers to a change of phase at constant p
- -refers to a property of the saturated solid
- –refers to a saturation temperature or pressure

Superscripts

- refers to a molar property (i.e. per unit amount-of-substance)
- -refers to a property at standard pressure $p^{\Theta} = 1$ bar (the superscript o is often used)

Saturated Water and Steam

<u> </u>	P.	r,	h,		h ,	<u>s</u>	×1.	50
[.c]	[bar]	[m³/kg]		[kJ/kg]			[kJ/kg K]	
0.01	0.006112	206.1	0•	2500.8	2500.8	0†	9.155	9.155
1	0.006566	192.6	4.2	2498.3	2502.5	0.015	9.113	9.128
2	0.007054	179.9	8.4	2495.9	2504.3	0.031	9.071	9.102
3	0.007575	168.2	12.6	2493.6	2506.2	0.046	9.030	9.076
-	0.008129	137.3	10.8	2491.5	2508.1	0.001	0.707	9.050
5	0.008719	147.1	21.0	2488.9	2509.9	0.076	8.948	9.024
2	0.009346	1201	25.2	2480.0	2511.8	0.091	8.908	8.999
Ŕ	0.01072	121.0	316	2481.9	2515.5	0.121	8.828	8.949
9	0.01147	113.4	37.8	2479.6	2517.4	0.136	8.788	8.924
10	0.01227	106.4	42.0	2477.2	2519.2	0.151	8.749	8.900
iĭ	0.01312	99.90	46.2	2474.9	2521.1	0.166	8.710	8.876
12	0.01401	93.83	50.4	2472.5	2522.9	0.180	8.671	8.851
13	0.01497	88.17	54.6	2470.2	2524.8	0.195	8.633	8.828
14	0.01597	82.89	58.8	2467.8	2526.6	0.210	8.594	8.804
15	0.01704	77.97	62.9	2465.5	2528.4	0.224	8.556	8.780
16	0.01817	73.38	67.1	2463.1	2530.2	0.239	8.518	8.757
17	0.01936	69.09	71.3	2460.8	2532.1	0.253	8.481	8.734
10	0.02063	61.34	79.7	2458.4	2533.9	0.268	8.444	8.712
20	0.02170	67.04	19.7	2450.0	2000.1	0.202	0.407	0.007
20	0.02337	57.84	83.9	2453.7	2537.0	0.296	8.370	8.000
22	0.02480	51 49	92.2	2449.0	2539.4	0.375	8 297	8 622
23	0.02808	48.62	96.4	2446.6	2543.0	0.339	8.261	8.600
24	0.02982	45.92	100.6	2444.2	2544.8	0.353	8.226	8.579
25	0.03166	43.40	104.8	2441.8	2546.6	0.367	8.190	8.557
26	0.03360	41.03	108.9	2439.5	2548.4	0.381	8.155	8.536
27	0.03564	38.81	113.1	2437.2	2550.3	0.395	8.120	8.515
28	0.03778	36.73	117.3	2434.8	2552.1	0.409	8.085	8.494
29	0.04004	34.77	121.5	2432.4	2553.9	0.423	8.050	8.473
30	0.04242	32.93	125.7	2430.0	2555.7	0.436	8.016	8.452
32	0.04754	29.57	142.4	2425.3	2559.3	0.464	7.948	8.412
36	0.05940	23.97	150.7	2415.8	2566.5	0.518	7.814	8 332
38	0.06624	21.63	159.1	2411.0	2570.1	0.545	7.749	8.294
40	0.07375	19.55	167.5	2406.2	2573.7	0.572	7.684	8.256
42	0.08198	17.69	175.8	2401.4	2577.2	0.599	7.620	8.219
44	0.09100	16.03	184.2	2396.6	2580.8	0.625	7.557	8.182
46	0.1009	14.56	192.5	2391.8	2584.3	0.651	7.494	8.145
48	0.1116	13.23	200.9	2387.0	2587.9	0.678	7.433	8.111
50	0.1233	12.04	209.3	2382.1	2591.4	0.704	7.371	8.075
22	0.1574	9.578	230.2	2370.1	2600.3	0.768	7.223	7.991
65	0.1992	6 201	251.1	2337.9	2609.0	0.831	6937	7.909
70	0.3116	5.045	293.0	2333.3	2626.3	0.955	6.800	7.755
75	0.3855	4,133	313.9	2320.8	2634.7	1.015	6.666	7.681
80	0.4736	3.408	334.9	2308.3	2643.2	1.075	6.536	7.611
85	0.5780	2.828	355.9	2295.6	2651.5	1.134	6.410	7.544
.90	0.7011	2.361	376.9	2282.8	2659.7	1.192	6.286	7.478
95	0.8453	1.982	398.0	2269.8	2667.8	1.250	6.166	7.416
100	1.01325	1.673	419.1	2256.7	2675.8	1.307	6.048	7.355

† u and s are chosen to be zero for saturated liquid at the triple point.

Note: values of $r_{\rm f}$ can be found on p. 10.

Saturated Water and Steam

p [bar]	<u>,</u> ['C]	r, [m³/kg]	<u>ur</u> [k]	<i>u</i> , /kg]	<u>h</u>	hre [kJ/kg]	<u>h</u> ,	4	sre [kJ/kgK]	<u></u>
0.006112	0.01	206.1	Ot	2375	0.	2501	2501	Ot	9.155	9.155
0.010	7.0	129.2	29	2385	29	2485	2514	0.106	8 868	8 974
0.015	13.0	87.98	55	2393	55	2470	2525	0.196	8.631	8.827
0.020	17.5	67.01	73	2399	73	2460	2533	0.261	8.462	8.723
0.025	21.1	54.26	88	2403	88	2451	2539	0.312	8.330	8.642
0.030	24.1	45.67	101	2408	101	2444	2545	0.354	8.222	8.576
0.035	26.7	39.48	112	2412	112	2438	2550	0.391	8.130	8.521
0.040	29.0	34.80	121	2415	121	2433	2554	0.422	8.051	8.473
0.045	31.0	31.14	130	2418	130	2428	2558	0.451	7.980	8.431
0.050	32.9	28.20	138	2420	138	2423	2561	0.476	7.918	8.394
0.055	34.6	25.77	145	2422	145	2419	2564	0.500	7.860	8.360
0.060	36.2	23.74	152	2425	152	2415	2567	0.521	7.808	8.329
0.065	37.7	22.02	158	2427	158	2412	2570	0.541	7.760	8.301
0.070	39.0	20.53	163	2428	163	2409	2572	0.559	7.715	8.274
0.075	40.3	19.24	169	2430	169	2405	2574	0.576	7.674	8.250
0.080	41.5	18.10	174	2432	174	2402	2576	0.593	7.634	8.227
0.085	42.7	17.10	179	2434	179	2400	2579	0.608	7.598	8.206
0.090	43.8	16.20	183	2435	183	2397	2580	0.622	7.564	8.186
0.095	44.8	15.40	188	2436	188	2394	2582	0.636	7.531	8.167
0.100	45.8	14.67	192	2437	192	2392	2584	0.649	7.500	8.149
0.12	49.4	12.36	207	2442	207	2383	2590	0.696	7.389	8.085
0.14	52.6	10.69	220	2446	220	2376	2596	0.737	7.294	8.031
0.16	55.3	9.432	232	2450	232	2369	2601	0.772	7.213	7.985
0.18	57.8	8.444	242	2453	242	2363	2605	0.804	7.140	7.944
0.20	60.1	7.648	251	2456	251	2358	2609	0.832	7.075	7.907
0.22	62.2	6.994	260	2459	260	2353	2613	0.858	7.016	7.874
0.24	64.1	6.445	268	2461	268	2348	2616	0.882	6.962	7.844
0.26	65.9	5.979	276	2464	276	2343	2619	0.904	6.913	7.817
0.28	67.5	5.578	283	2466	283	2339	2622	0.925	6.866	7.791
0.30	09.1	5.228	289	2408	289	2336	2625	0.944	6.823	1.767
0.32	70.6	4.921	295	2470	295	2332	2627	0.962	6.783	7.745
0.34	72.0	4.649	302	2472	302	2328	2630	0.980	6.745	7.725
0.36	73.4	4.407	307	24/3	307	2325	2632	0.996	6.709	7.705
0.58	750	1 007	312	2415	312	2322	2034	1.011	0.0/3	7.080
0.40	73.5	3.392	510	2470	510	2518	2030	1.020	0.043	7.009
0.42	77.1	3.814	323	24/8	323	2315	2638	1.040	6.612	7.652
0.44	70.2	3.031	327	24/9	32/	2313	2640	1.054	6.582	7.636
0.48	80.3	3.302	332	2481	332	2310	2042	1.06/	0.334	7.021
0.50	81.3	3.239	340	2483	340	2305	2645	1.091	6 502	7 593
0.55	837	2 964	351	2486	261	2209	2640	1 110	6 442	7 661
0.60	86.0	2 731	360	2400	351	2298	2649	1.119	6 396	7.501
0.65	88.0	2535	369	2407	360	2295	2657	1 169	6 335	7 504
0.70	90.0	2 364	377	2494	377	2283	2660	1 197	6 286	7 478
0.75	91.8	2.217	384	2496	384	2278	2662	1,213	6.243	7.456
0.80	935	2 087	307	7498	302	2272	2665	1 222	6 201	7 434
0.85	95.2	1972	300	2500	300	22/5	2003	1 253	6 162	7.434
0.90	967	1.869	405	2502	405	2266	2671	1 270	6124	7 304
0.95	98.2	1,777	411	2504	411	2262	2673	1 287	6 089	7 376
1.00	99.6	1.694	417	2506	417	2258	2675	1.303	6.056	7.359
$\frac{h_{i}}{(kJ/kg)} = \frac{h_{i}}{(kJ/kg)}$	P ^v r [k]/kø]	$=\frac{p}{(bar)}\times\frac{10^{2}}{fr}$	$\frac{1}{(N)} \times \frac{1}{(n)}$	^E r n ³ /kel ×	$\left[\frac{m^{2}}{m}\right] \times \frac{1}{10}$	[kJ]	$\times \frac{1}{fk 1/k}$		(a)	

$$\frac{p}{[bar]} \times \frac{v_{\rm f}}{[m^3/kg]} \times 10^2 = 0.006112 \times 0.0010002 \times 10^2 = 0.0006112$$

Saturated Water and Steam

p [bar]	<u>,</u> ['C]	v, [m³/kg]	$\frac{u_r}{[kJ/kg]}$	h _r h _{rs} h _s [kJ/kg]	sr sra sa [kJ/kgK]		
40	250.3	0.04977	1082 2602	1087 1714 2801	2.797 3.273 6.070		
42 44 46 48 50	253.2 256.0 258.8 261.4 263.9	0.04732 0.04509 0.04305 0.04117 0.03944	1097 2601 1109 2600 1123 2599 1136 2598 1149 2597	1102 1698 2800 1115 1683 2798 1129 1668 2797 1142 1654 2796 1155 1639 2794	2.823 3.226 6.049 2.849 3.180 6.029 2.874 3.136 6.010 2.897 3.094 5.991 2.921 3.052 5.973		
55 60 65 70 75	269.9 275.6 280.8 285.8 290.5	0.03563 0.03244 0.02972 0.02737 0.02532	1178 2594 1206 2590 1232 2586 1258 2581 1283 2576	1185 1605 2790 1214 1570 2784 1241 1538 2779 1267 1505 2772 1293 1473 2766	2.976 2.955 5.931 3.027 2.863 5.890 3.076 2.775 5.851 3.122 2.692 5.814 3.166 2.613 5.779		
80 85 90 95 100	295.0 299.2 303.3 307.2 311.0	0.02352 0.02192 0.02048 0.01919 0.01802	1306 2570 1329 2565 1351 2559 1372 2552 1393 2545	1317 1441 2758 1341 1410 2751 1364 1379 2743 1386 1348 2734 1408 1317 2725	3.207 2.537 5.744 3.248 2.463 5.711 3.286 2.393 5.679 3.324 2.323 5.647 3.360 2.255 5.615		
105 110 115 120 125	314.6 318.0 321.4 324.6 327.8	0.01696 0.01598 0.01508 0.01426 0.01349	1414 2537 1434 2529 1454 2522 1473 2514 1492 2505	1429 1286 2715 1450 1255 2705 1471 1224 2695 1491 1194 2685 1511 1163 2674	3.395 2.189 5.584 3.430 2.123 5.553 3.463 2.060 5.523 3.496 1.997 5.493 3.529 1.934 5.463		
130 135 140 145 150	330.8 333.8 336.6 339.4 342.1	0.01278 0.01211 0.01149 0.01090 0.01035	1511 2496 1530 2487 1548 2477 1567 2467 1585 2456	1531 1131 2662 1551 1099 2650 1571 1067 2638 1591 1034 2625 1610 1001 2611	3.561 1.872 5.433 3.592 1.811 5.403 3.623 1.750 5.373 3.654 1.689 5.343 3.685 1.627 5.312		
155 160 165 170 175	344.8 347.3 349.8 352.3 354.6	0.00982 0.00932 0.00884 0.00838 0.00794	1604 2445 1623 2433 1641 2420 1660 2406 1679 2391	1630 967 2597 1650 932 2582 1670 895 2565 1690 858 2548 1711 819 2530	3.715 1.565 5.280 3.746 1.502 5.248 3.777 1.437 5.214 3.808 1.373 5.181 3.839 1.305 5.144		
180 185 190 195 200	357.0 359.2 361.4 363.6 365.7	0.00751 0.00709 0.00668 0.00627 0.00585	1699 2375 1719 2358 1740 2339 1762 2318 1786 2294	1732 778 2510 1754 735 2489 1777 689 2466 1801 639 2440 1827 584 2411	3.872 1.236 5.108 3.905 1.163 5.068 3.941 1.086 5.027 3.977 1.004 4.981 4.014 0.914 4.928		
202 204 206 208 210	366.5 367.4 368.2 369.0 369.8	0.00569 0.00552 0.00534 0.00517 0.00498	1796 2283 1806 2271 1817 2259 1829 2245 1842 2231	1838 560 2398 1849 535 2384 1861 508 2369 1874 479 2353 1889 447 2336	4.031 0.875 4.906 4.049 0.835 4.884 4.067 0.792 4.859 4.087 0.745 4.832 4.108 0.695 4.803		
212 214 216 218 220	370.6 371.4 372.1 372.9 373.7	0.00479 0.00458 0.00436 0.00409 0.00368	1856 2214 1871 2196 1888 2174 1911 2146 1949 2097	1904 412 2316 1921 373 2294 1940 328 2268 1965 270 2235 2008 170 2178	4.131 0.640 4.771 4.157 0.579 4.736 4.186 0.508 4.694 4.224 0.417 4.641 4.289 0.263 4.552		
221.2	374.15	0.00317	2014 2014	2084 0 2084	4.406 0.000 4.406		

Superheated Steam[†]

p/[bar] (T,/[°C])		<u>7</u> [°C]	50	100	150	200	250	300	400	500
0	u = h - RT at $p = 0$	v u h	2446 2595	2517 2689	2589 2784	2662 2880	2737 2978	2812 3077	2969 3280	3132 3489
0.006112 (0.01)	r _a 206.1 u _a 2375 h _a 2501 s _a 9.155	r u h s	243.9 2446 2595 9.468	281.7 2517 2689 9.739	319.5 2589 2784 9.978	357.3 2662 2880 10.193	395.0 2737 2978 10.390	432.8 2812 3077 10.571	508.3 2969 3280 10.897	583.8 3132 3489 11.187
0.01 (7.0)	v. 129.2 u. 2385 h. 2514 s. 8.974	r u h s	149.1 2446 2595 9.241	172.2 2517 2689 9.512	195.3 2589 2784 9.751	218.4 2662 2880 9.966	241.4 2737 2978 10.163	264.5 2812 3077 10.344	310.7 2969 3280 10.670	356.8 3132 3489 10.960
0.05 (32.9)	v 28.20 u 2420 h 2561 s 8.394	r u h s	29.78 2445 2594 8.496	34.42 2516 2688 8.768	39.04 2589 2784 9.008	43.66 2662 2880 9.223	48.28 2737 2978 9.420	52.90 2812 3077 9.601	62.13 2969 3280 9.927	71.36 3132 3489 10.217
0.1 (45.8)	v 14.67 u 2437 h 2584 s 8.149	r u h s	14.87 2443 2592 8.173	17.20 2516 2688 8.447	19.51 2588 2783 8.688	21.83 2662 2880 8.903	24.14 2736 2977 9.100	26.45 2812 3077 9.281	31.06 2969 3280 9.607	35.68 3132 3489 9.897
0.5 (81.3)	r 3.239 u 2483 h 2645 s 7.593	r u h s		3.420 2512 2683 7.694	3.890 2585 2780 7.940	4.356 2660 2878 8.158	4.821 2735 2976 8.355	5.284 2812 3076 8.537	6.209 2969 3279 8.864	7.134 3132 3489 9.154
0.75 (91.8)	r. 2.217 u. 2496 h. 2662 s. 7.456	r u h s		2.271 2510 2680 7.500	2.588 2585 2779 7.750	2.901 2659 2877 7.969	3.211 2734 2975 8.167	3.521 2811 3075 8.349	4.138 2969 3279 8.676	4.755 3132 3489 8.967
1 (99.6)	r 1.694 u 2506 h 2675 s 7.359	r u h s		1.696 2506 2676 7.360	1.937 2583 2777 7.614	2.173 2659 2876 7.834	2.406 2734 2975 8.033	2.639 2811 3075 8.215	3.103 2968 3278 8.543	3.565 3131 3488 8.834
1.01325 (100.0)	r 1.673 u 2506 h 2676 s 7.355	t u h s			1.912 2583 2777 7.608	2.145 2659 2876 7.828	2.375 2734 2975 8.027	2.604 2811 3075 8.209	3.062 2968 3278 8.537	3.519 3131 3488 8.828
1.5 (111.4)	r, 1.159 u, 2519 h, 2693 s, 7.223	r u h s			1.286 2580 2773 7.420	1.445 2656 2873 7.643	1.601 2733 2973 7.843	1.757 2809 3073 8.027	2.067 2967 3277 8.355	2.376 3131 3488 8.646
2 (120.2)	r 0.8856 u 2530 h 2707 s 7.127	r u h s			0.9602 2578 2770 7.280	1.081 2655 2871 7.507	1.199 2731 2971 7.708	1.316 2809 3072 7.892	1.549 2967 3277 8.221	1.781 3131 3487 8.513
3 (133.5)	r. 0.6057 u. 2544 h. 2725 s. 6.993	r u h s			0.6342 2572 2762 7.078	0.7166 2651 2866 7.312	0.7965 2729 2968 7.517	0.8754 2807 3070 7.702	1.031 2966 3275 8.032	1.187 3130 3486 8_324
4 (143.6)	r. 0.4623 u. 2554 h. 2739 s. 6.897	r/[m³/l u/[kJ/k h/[kJ/k s/[kJ/k	kg] g] g] gK]		0.4710 2565 2753 6.929	0.5345 2648 2862 7.172	0.5953 2727 2965 7.379	0.6549 2805 3067 7.566	0.7725 2965 3274 7.898	0.8893 3129 3485 8.191

† The entries in all tables are regarded as pure numbers and therefore the symbols for the physical quantities should be divided by the appropriate units as shown for the entries at $p_{n}[bar] = 4$. Because of lack of space, this has not been done consistently in the superheat and supercritical tables on pp. 6-9 and in the tables on pp. 11 and 23.

Superheated Steam*

p/[bar] (T,/[*C])		<u></u> <u>τ</u> ['C]	200	250	300	350	400	450	500	600
5 (151.8)	v 0.3748 v 2562 h 2749 s 6.822	r u h s	0.4252 2644 2857 7.060	0.4745 2725 2962 7.271	0.5226 2804 3065 7.460	0.5701 2883 3168 7.633	0.6172 2963 3272 7.793	0.6641 3045 3377 7.944	0.7108 3129 3484 8.087	0.8040 3300 3702 8.351
6 (158.8)	v 0.3156 v 2568 h 2757 s 6.761	U U h S	0.3522 2640 2851 6.968	0.3940 2722 2958 7.182	0.4344 2801 3062 7.373	0.4743 2881 3166 7.546	0.5136 2962 3270 7.707	0.5528 3044 3376 7.858	0.5919 3128 3483 8.001	0.6697 3299 3701 8.267
7 (165.0)	v 0.2728 u 2573 h 2764 s 6.709	r u h s	0.3001 2636 2846 6.888	0.3364 2720 2955 7.106	0.3714 2800 3060 7.298	0.4058 2880 3164 7.473	0.4397 2961 3269 7.634	0.4734 3043 3374 7.786	0.5069 3127 3482 7.929	0.5737 3298 3700 8.195
8 (170.4)	v 0.2403 v 2577 h 2769 s 6.663	r u h s	0.2610 2631 2840 6.817	0.2933 2716 2951 7.040	0.3242 2798 3057 7.233	0.3544 2878 3162 7,409	0.3842 2960 3267 7.571	0.4138 3042 3373 7.723	0.4432 3126 3481 7.866	0.5018 3298 3699 8.132
9 (175.4)	v 0.2149 v 2581 h 2774 s 6.623	U U h S	0.2305 2628 2835 6.753	0.2597 2714 2948 6.980	0.2874 2796 3055 7.176	0.3144 2877 3160 7.352	0.3410 2959 3266 7.515	0.3674 3041 3372 7.667	0.3937 3126 3480 7.811	0.4458 3298 3699 8.077
10 (179.9)	r 0.1944 u 2584 h 2778 s 6.586	r u h s	0.2061 2623 2829 6.695	0.2328 2711 2944 6.926	0.2580 2794 3052 7.124	0.2825 2875 3158 7.301	0.3065 2957 3264 7.464	0.3303 3040 3370 7.617	0.3540 3124 3478 7.761	0.4010 3297 3698 8.028
15 (198.3)	r 0.1317 u 2595 h 2792 s 6.445	r u h s	0.1324 2597 2796 6.452	0.1520 2697 2925 6.711	0.1697 2784 3039 6.919	0.1865 2868 3148 7.102	0.2029 2952 3256 7.268	0.2191 3035 3364 7.423	0.2351 3120 3473 7.569	0.2667 3294 3694 7.838
20 (212.4)	v 0.0996 u 2600 h 2799 s 6.340	r u h s		0.1115 2681 2904 6.547	0.1255 2774 3025 6.768	0.1386 2861 3138 6.957	0.1511 2946 3248 7.126	0.1634 3030 3357 7.283	0.1756 3116 3467 7.431	0.1995 3291 3690 7.701
30 (233.8)	v 0.0666 u 2603 h 2803 s 6.186	r u h s		0.0706 2646 2858 6.289	0.0812 2751 2995 6.541	0.0905 2845 3117 6.744	0.0993 2933 3231 6.921	0.1078 3020 3343 7.082	0.1161 3108 3456 7.233	0.1324 3285 3682 7.507
40 (250.3)	v 0.0498 u 2602 h 2801 s 6.070	r u h s			0.0588 2728 2963 6.364	0.0664 2828 3094 6.584	0.0733 2921 3214 6.769	0.0800 3010 3330 6.935	0.0864 3099 3445 7.089	0.0988 3279 3674 7.368
50 (263.9)	r 0.0394 u 2597 h 2794 s 5.973	r u h s			0.0453 2700 2927 6.212	0.0519 2810 3070 6.451	0.0578 2907 3196 6.646	0.0632 3000 3316 6.818	0.0685 3090 3433 6.975	0.0786 3273 3666 7.258
60 (275.6)	r 0.0324 u 2590 h 2784 s 5.890	r u h s			0.0362 2670 2887 6.071	0.0422 2792 3045 6.336	0.0473 2893 3177 6.541	0.0521 2988 3301 6.719	0.0566 3081 3421 6.879	0.0652 3266 3657 7.166
70 (285.8)	r 0.0274 u 2581 h 2772 s 5.814	r/[m³/ u/[kJ/ h/[kJ/ s/[kJ/]	(kg] kg] kg] kgK]		0.0295 2634 2841 5.934	0.0352 2772 3018 6.231	0.0399 2879 3158 6.448	0.0441 2978 3287 6.632	0.0481 3073 3410 6.796	0.0556 3260 3649 7.088

* See footnote on p. 6.

Superheated Steam*

p/[bar] (T _s /[°C])		<u>т</u> ['С]	350	375	400	425	450	500	600	700
80 (295.0)	v, 0.02352 h, 2758 s, 5.744	v/10 ⁻² h s	2.994 2990 6.133	3.220 3067 6.255	3.428 3139 6.364	3.625 3207 6.463	3.812 3272 6.555	4.170 3398 6.723	4.839 3641 7.019	5.476 3881 7.279
90 (303.3)	v, 0.02048 h, 2743 s, 5.679	r/10 ⁻² h s	2.578 2959 6.039	2.794 3042 6.171	2.991 3118 6.286	3.173 3189 6.390	3.346 3256 6.484	3.673 3385 6.657	4.279 3633 6.958	4.852 3874 7.220
100 (311.O)	v, 0.01802 h, 2725 s, 5.615	r/10 ⁻² h s	2.241 2926 5.947	2.453 3017 6.091	2.639 3097 6.213	2.812 3172 6.321	2.972 3241 6.419	3.275 3373 6.596	3.831 3624 6.902	4.353 3868 7.166
110 (318.0)	v, 0.01598 h, 2705 s, 5.553	r/10 ⁻² h s	1.960 2889 5.856	2.169 2989 6.014	2.350 3075 6.143	2.514 3153 6.257	2.666 3225 6.358	2.949 3360 6.539	3.465 3616 6.850	3.945 3862 7.117
120 (324.6)	v, 0.01426 h, 2685 s, 5.493	r/10 ⁻² h s	1.719 2849 5.762	1.931 2960 5.937	2.107 3052 6.076	2.265 3134 6.195	2.410 3209 6.301	2.677 3348 6.487	3.159 3607 6.802	3.605 3856 7.072
130 (330.8)	b, 2662 s, 5.433	r/10 ⁻² h s	1.509 2804 5.664	1.726 2929 5.862	1.901 3028 6.011	2.053 3114 6.136	2.193 3192 6.246	2.447 3335 6.437	2.901 3599 6.758	3.318 3850 7.030
140 (336.6)	v, 0.01149 h 2638 s 5.373	v/10 ⁻² h s	1.321 2753 5.559	1.548 2896 5.784	1.722 3003 5.946	1.872 3093 6.079	2.006 3175 6.193	2.250 3322 6.390	2.679 3590 6.716	3.071 3843 6.991
150 (342.1)	v, 0.01035 h, 2611 s, 5.312	v/10 ⁻² h s	1.146 2693 5.443	1.391 2861 5.707	1.566 2977 5.883	1.714 3073 6.023	1.844 3157 6.142	2.078 3309 6.345	2.487 3581 6.677	2.857 3837 6.954
160 (347.3)	v 0.00932 h, 2582 s 5.248	v/10 ⁻² h s	0.976 2617 5.304	1.248 2821 5.626	1.427 2949 5.820	1.573 3051 5.968	1.702 3139 6.093	1.928 3295 6.301	2.319 3573 6.639	2.670 3831 6.919
170 (352.3)	v, 0.00838 h, 2548 s, 5.181	r/10 ⁻² h s		1.117 2778 5.541	1.303 2920 5.756	1.449 3028 5.914	1.576 3121 6.044	1.796 3281 6.260	2.171 3564 6.603	2.506 3825 6.886
180 (357.0)	v 0.00751 h, 2510 s 5.108	v/10 ⁻² h s		0.997 2729 5.449	1.191 2888 5.691	1.338 3004 5.861	1.463 3102 5.997	1.678 3268 6.219	2.039 3555 6.569	2.359 3818 6.855
190 (361.4)	v, 0.00668 h, 2466 s. 5.027	r/10 ⁻² h s		0.882 2674 5.348	1.089 2855 5.625	1.238 2980 5.807	1.362 3082 5.950	1.572 3254 6.180	1.921 3546 6.536	2.228 3812 6.825
200 (365.7)	v, 0.00585 h, 2411 ř. 4.928	v/10 ⁻² [1 h/[kJ/kg s/[kJ/kg	n³/kg]] K]	0.768 2605 5.228	0.995 2819 5.556	1.147 2955 5.753	1.270 3062 5.904	1.477 3239 6.142	1.815 3537 6.505	2.110 3806 6.796
210 (369.8)	v. 0.00498 h, 2336 s, 4.803	v/10 ⁻² h s		0.650 2500 5.050	0.908 2781 5.484	1.064 2928 5.699	1.187 3041 5.859	1.390 3225 6.105	1.719 3528 6.474	2.003 3799 6.768
220 (373.7)	v, 0.00368 h, 2178 s, 4.552	v/10 ⁻² h s		0.450 2300 4.725	0.825 2738 5.409	0.987 2900 5.645	1.111 3020 5.813	1.312 3210 6.068	1.632 3519 6.444	1.906 3793 6.742
221.2 (374.15)	$v_{e} = 0.00317$ $h_{e} = 2084$ $s_{e} = 4.406$	v/10 ⁻² h s	0.163 1637 3.708	0.351 2139 4.490	0.816 2733 5.398	0.978 2896 5.638	1.103 3017 5.807	1.303 3208 6.064	1.622 3518 6.441	1.895 3792 6.739

* See footnote on p. 6.

Note: linear interpolation is not accurate near the critical point.

REFERENCES

- Kamaruzaman Daud and Roslan hashim (n.d), Module J2006. Thermodynamics 1. Mechanical Department of Malaysian Polytechnic Curriculum.
- Sarimah Atan et.al (2016), Thermodynamics, 1st Edition, Polytechnic Approach, Politeknik Nilai.
- Yunus Cengel, Michael Boles (2010) Thermodynamics: An Engineering Approach with Student Resources DVD. McGraw Hill.
- Rajput, R.K. (2010) A Textbook of Engineering Thermodynamics, 4th Edition, Laxmi Publication (P) Ltd.
- Nag, P.K. (2010) Basic And Applied Thermodynamics, 2nd Edition, Tata McGraw Hill Education Private Limited.
- Gupta, S.C. (2006), Thermodynamics, Dorling Kindersley(India) Pvt. Ltd Easteop, T. D &McConkey.(2006) Applied Thermodynamics For Engineering Technologist, 5thEdition, Pearson & Prentice Hall, Singapore.
- John P. O'Connell, J.M. Haile (2005) Thermodynamics: Fundamentals Of Applications, Cambridge University Press.
- Sonntag, R. E.,Borgnakke, C., and Van Wylen, G. J., (2003) Fundamentals Of Thermodynamics, 6th Edition, John Wiley & Sons, Inc.

