ELECTRONIC SYSTEM

AMPLIFIER

GADAFFI OMAR

ELECTRONIC SYSTEM AMPLIFIER

©ePembelajaran Politeknik Merlimau

Writer Gadaffi bin Omar

Published in 2021

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanic methods, without the prior written permission of the writer, except in the case of brief quotations embodied in reviews and certain other non-commercial uses.

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

Gadaffi Omar
ELECTRONIC SYSTEM : AMPLIFIER / GADAFFI OMAR. Mode of access: Internet
eISBN 978-967-2241-89-8
1. Amplifiers (Electronics).
2. Electronics.
3. Government publications--Malaysia.
4. Electronic books.
I. Title.
621.381535

Published by: Politeknik Merlimau, Melaka KB1031 Pej Pos Merlimau, 77300 Merlimau Melaka

PREFACE

This books aims for students of mechatronic engineering with the explanation of the basic concepts of semiconductor devices to diode, transistor, Common emitter, biased voltage divider, collector amplifier, and Common base.

The entire book is written in a simple way to enable them to students understand the concepts quickly and the subject in easy way. This book shall provide knowledge on the theory, concept and application of formula and to acquire the problem solving skills related to the respective

processes.

TABLE OF CONTENT

1)	INTRODUCTION	3
2)	TRANSISTOR AS AMPLIFIER	7
	a. Common Base Amplifier	8
	b. Common Collector Amplifier	13
	c. Common Emitter Amplifier	16
	d. Amplifier Summary	20
3)	COMMON EMITTER AMPLIFIER	27
	a. Characteristic Curves	28
	b. Load Line, Q Point, Saturation Point And Cut Off Point	30
	c. Amplifier Enhancement Technique	35
	d. Biasing Techniques Of Common Emitter Transistor Configuration	36
	e. Base Biased With Emitter Feedback	37
	f. Biased Voltage Divider Technique	38
4)	REFERENCES	45

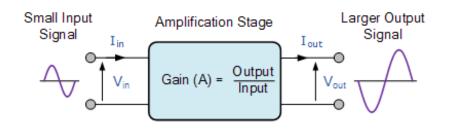
AMPLIFIER

AMPLIFIER

COMMON BASE AMPLIFIER COMMON COLLECTOR AMPLIFIER COMMON EMITTER AMPLIFIER LOAD LINE

gadaffi@pmm.edu.my

2



• WHAT IS AMPLIFIER?

- An electronic device that increases the power of a signal.
- Amplifiers is a circuit that contains the amplifying device, such as a **Transistor**, Field Effect Transistor or Op-amp, with the output signal being much greater than that of the input signal.

AMPLIFIER GAIN

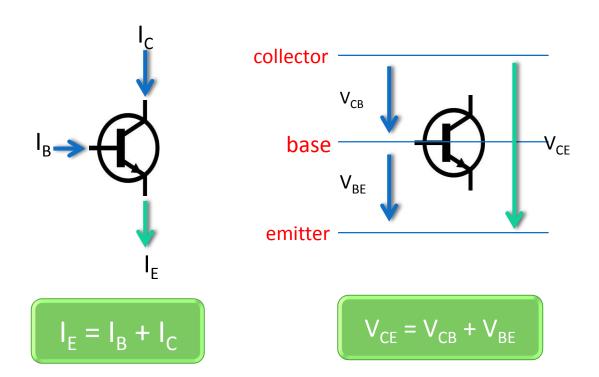
 Amplifier gain is simply the ratio of the output divided-by the input.

- There are three different kinds of amplifier gain which can be measured;
 - Voltage Gain (A_v) ,
 - Current Gain (A_i)
 - Power Gain (A_p)

- VOLTAGE GAIN
 - Voltage Gain $(A_V) = \frac{Output Voltage}{Input Voltage} = \frac{V_{out}}{V_{in}}$

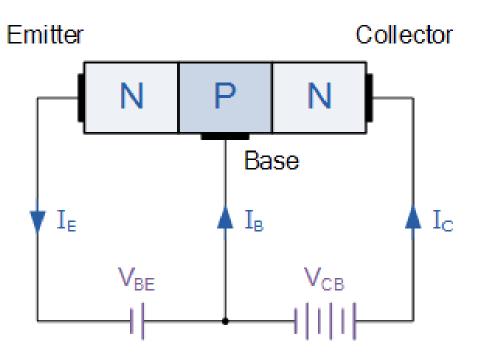
CURRENT GAIN

• Current Gain $(A_i) = \frac{Output Current}{Input Current} = \frac{I_{out}}{I_{in}}$


• POWER GAIN

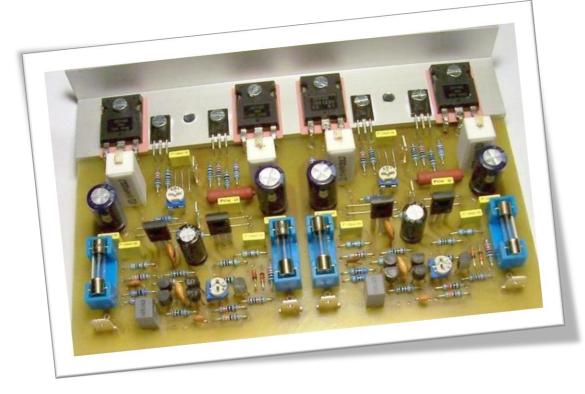
• Power Gain
$$(A_p) = \frac{Output Power}{Input Power} = \frac{P_{out}}{P_{in}}$$

- Common Amplifier devices;
 - Hi-fi or home theater unit
 - In car entertainment (radio →AMPLIFIER → sub woofer/speaker)

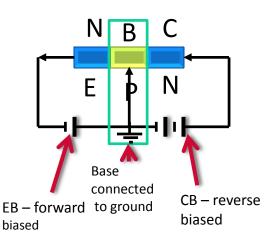

 TRANSISTOR BASIC FORMULA (Kirchoff Current Law and Kirchoff Voltage Law)

 $V_{BE} = 0.7V \ (silicon)$ $V_{BE} = 0.3V \ (germanium)$ $V_{BE} = 0V \ (if not stated in question)$

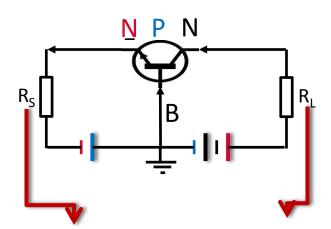
CONDITIONS FOR TRANSISTOR TO OPERATE


Pin EB (Emitter Base) – Forward Biased
 (+ve battery connect to P material while –ve
 battery connect to N material)

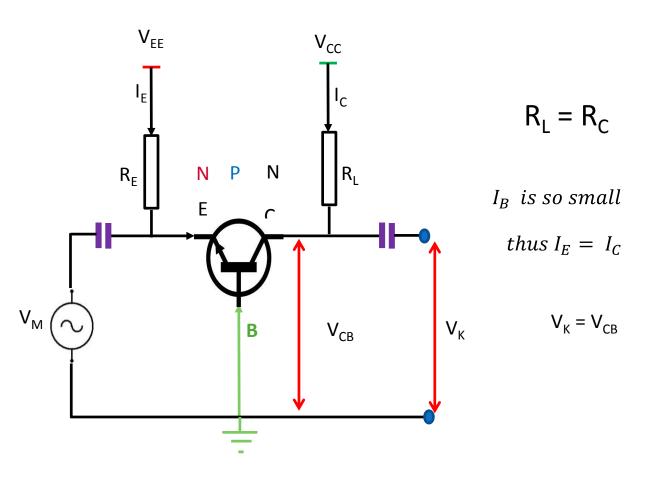
Pin CB (Collector Base) – Reverse Biased
 (-ve battery connect to P material while +ve battery connect to N material)



TRANSISTOR AS AMPLIFIER


- There are THREE configuration for transistor to operate as amplifier;
 - Common Base
 - Common Collector
 - Common Emitter

BATTERY CONNECTION


COMMON BASE AMPLIFIER
 CIRCUIT

- R_s → Series Resistance → Input resistance
 - → can be presented as R_E or R_B depend on which terminal connected to input signal
- R_L → Load Resistance → Output resistance

COMMON BASE AMPLIFIER CIRCUIT WITH INPUT SIGNAL

INPUT

$$V_{EE} = \mathbf{V}_{RE} + V_{BE}$$
$$V_{EE} = \mathbf{I}_{E}\mathbf{R}_{E} + V_{BE}$$
$$I_{E} = \frac{V_{EE} - V_{BE}}{R_{E}}$$

OUTPUT

$$V_{CC} = V_{RL} + V_K$$
$$V_{CC} = I_C R_L + V_K$$
$$V_K = V_{CC} - I_C R_L$$
$$I_E = I_C$$

- POLITE KITIK MALAYSA MERLIMAT
- Alpha (α) is a current gain factor for common base amplifier.
- It can be divided into two condition;

i.
$$\alpha_{DC} = \frac{I_C}{I_E}$$

 current gain when collector current, emitter current and V_κ at a fixed value.

ii.
$$\alpha_{AC} = \frac{\Delta I_C}{\Delta I_E}$$

 current gain when there is a changed of values for collector current and emitter current while V_K at a fixed value.

** V_{K} = output voltage

10

COMMON BASE AMPLIFIER GAIN CALCULATION (E.G. 1)

• Calculate the value of α_{DC} and α_{AC} if given the initial value of collector current (I_c) is 0.98mA, while the emitter current (I_E) is 1mA. Then the value of both current rise to 1mA (for I_C) and 1.05mA (for I_E)

SOLUTION

$$\alpha_{DC} = \frac{I_C}{I_E}$$
$$\alpha_{DC} = \frac{0.95 \ mA}{1 \ mA}$$

 $\alpha_{DC} = \mathbf{0.98}$

$$\alpha_{AC} = \frac{\Delta I_C}{\Delta I_E}$$

$$\alpha_{AC} = \frac{1mA - 0.95 \, mA}{1.05mA - 1 \, mA}$$

 $\alpha_{AC} = \mathbf{0.4}$

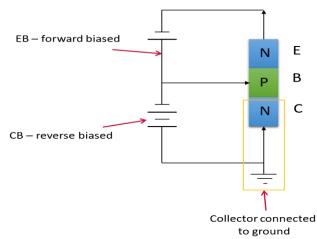
Common Base Amplifier Characteristic

Input resistance (R _{in})	Low
Output resistance (R _{out})	High
Current gain (A _i)	No
Voltage gain (A _v)	High
Power gain (A _p)	High
Phase shift	No

•
$$A_i = \frac{I_C}{I_E} I_C \le I_E$$

 $A_i \le 1$, thus there is **no current gain**

•
$$A_{\nu} = \frac{V_{CB}}{V_{EB}} V_{CE} = V_{CB} + V_{BE}$$


 $V_{BE} = V_{CE} - V_{CB}$ $V_{EB} = V_{CB} - V_{CE}$

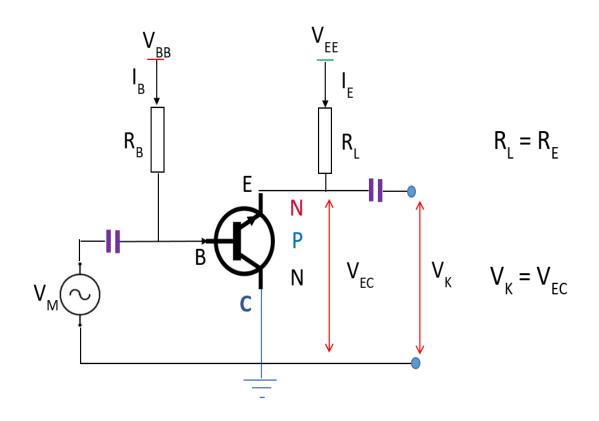
So $A_v = \frac{V_{CB}}{V_{CB} - V_{CE}} \frac{big value}{small value}$


- Thus Voltage gain (A_v) is high.
- A_p refer to A_v , thus **Ap** is also high
- EB is forward biased by V_{BB}, thus input resistance value is small
- CB is reverse biased by V_{cc}, thus **output resistance value is high.**

COMMON COLLECTOR AMPLIFIER

BATTERY CONNECTION

COMMON COLLECTOR AMPLIFIER CIRCUIT



NERLINA

COMMON COLLECTOR AMPLIFIER

 COMMON COLLECTOR AMPLIFIER CIRCUIT WITH INPUT SIGNAL

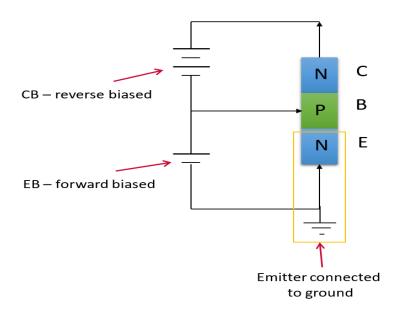
COMMON COLLECTOR AMPLIFIER

Input resistance (R _{in})	High
Output resistance (R _{out})	Low
Current gain (A _i)	High
Voltage gain (A _v)	Low
Power gain (A _p)	Low
Phase shift	No

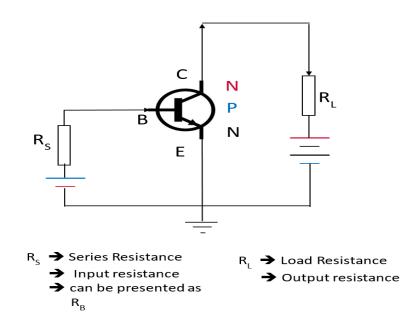
•
$$A_i = \frac{I_E}{I_B} \frac{big \ value}{small \ value}$$
 thus A_i is high

•
$$A_{v} = \frac{V_{EC}}{V_{BC}} V_{EC} = V_{BC} + V_{EB}$$

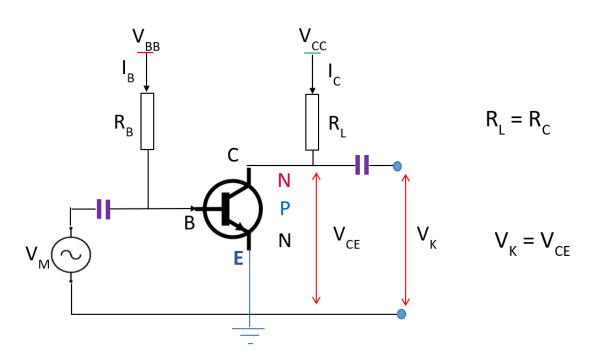
 V_{EB} value is small


•
$$V_{BC} \leq V_{EC}$$

So $A_{v} = \frac{V_{EC}}{V_{BC}} \frac{bigger value}{big value}$


- Thus Voltage gain (A_v) is LOW.
- A_p refer to A_v , thus Ap is also LOW
- EB is forward biased by $(V_{EE} V_{BB})$, thus input resistance value is HIGH
- CB is reverse biased by V_{BB}, thus **output resistance value is LOW**.

BATTERY CONNECTION



COMMON EMITTER AMPLIFIER CIRCUIT

 COMMON EMITTER AMPLIFIER CIRCUIT WITH INPUT SIGNAL

INPUT

$$V_{BB} = V_{RB} + V_{BE}$$
$$V_{BB} = I_B R_B + V_{BE}$$
$$I_B = \frac{V_{BB} - V_{BE}}{R_B}$$

OUTPUT $I_{C} = \beta . I_{B}$ $V_{CC} = V_{RL} + V_{K}$ $V_{CC} = I_{C}R_{L} + V_{K}$ $V_{K} = V_{CC} + I_{C}R_{L}$

- Beta (β) is a current gain factor for common emitter amplifier.
- It can be divided into two condition;

$$i. \quad \beta_{DC} = \frac{I_C}{I_B}$$

 current gain when collector current, base current and V_K at a fixed value.

ii.
$$\boldsymbol{\beta}_{AC} = \frac{\Delta I_C}{\Delta I_B}$$

 current gain when there is a changed of values for collector current and base current while V_κ at a fixed value.

Common Emitter Amplifier Characteristic

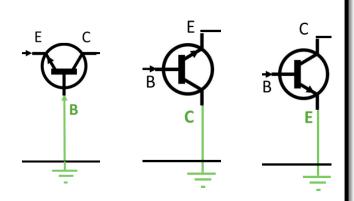
Input resistance (R _{in})	Low
Output resistance (R _{out})	High
Current gain (A _i)	High
Voltage gain (A _v)	High
Power gain (A _p)	High
Phase shift	180 ⁰

•
$$A_i = \frac{I_C}{I_B} \frac{big \ value}{small \ value}$$
 thus A_i is HIGH

•
$$A_{v} = \frac{V_{CE}}{V_{BE}} V_{CE} = V_{CB} + V_{BE}$$

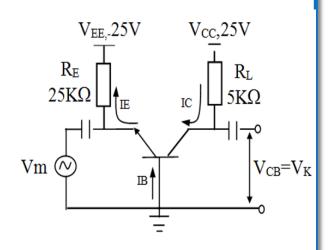
 V_{EB} value is small

So
$$A_v = \frac{V_{CE}}{V_{CE}} \frac{big value}{small value}$$


- Thus Voltage gain (A_v) is HIGH.
- A_p refer to A_v , thus Ap is also HIGH
- EB is forward biased by (V_{BB}) , thus **input resistance value is LOW**
- CB is reverse biased by V_{cc}, thus **output resistance value is HIGH**.

AMPLIFIER SUMMARY

Differentiation between amplifier characteristic


Amplifier Characteristic	Com mon Base	Com mon Collec tor	Com mon Emitt er
Input resistance (R _{in})	Low	High	Low
Output resistance (R _{out})	High	Low	High
Current gain (A _i)	No	High	High
Voltage gain (A _v)	High	Low	High
Power gain (A _p)	High	Low	High
Phase shift	No	No	180 ⁰

Tips to identify types of amplifier LOOK AT WHICH TRANSISTOR PIN IS GROUNDED

Tips to SOLVE basic amplifier calculation STEP 1 : Derive Input formula $V_{FF} = V_{RF} + V_{BF}$ (Common Base) $V_{BB} = V_{RB} + V_{BE}$ (Common Emitter) STEP 2 : Determine V silicon = 0.7V , germanium = 0.3V @ not mention/none = 0V STEP 3 : Determine Input Current I_c (Common Base) @ I_R (Common Emitter) STEP 4 : Determine Output Current I_z = I_c (Common Base) @ $I_c = \beta I_s$ (Common Emitter) STEP 5 : Derive Output Formula $V_{CC} = V_{RL} + V_{CB}$ (Common Base) $V_{CC} = V_{RL} + V_{CE}$ (Common Emitter) STEP 6 : Determine Output Voltage V_K = V_{CB} (Common Base) $V_{\mu} = V_{CE}$ (Common Emitter)

COMMON BASE AMPLIFIER CALCULATION (E.G. 1)

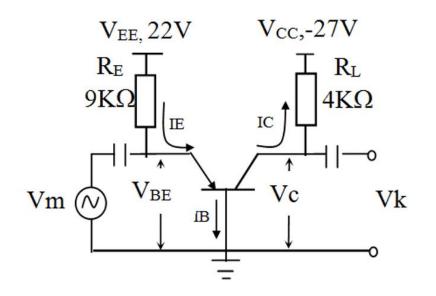
 Determine the output voltage for common base amplifier above

SOLUTION

Given; $R_{E} = 25 \text{ K}\Omega$, $R_{L} = 5 \text{ K}\Omega$, $V_{EE} = 25 \text{ V}$, $V_{CC} = 25 \text{ V}$, $V_{BE} = 0 \text{ V}$

 $V_{EE} = V_{RE} + V_{BE}$ $V_{EE} = I_E R_E + V_{BE}$

$$I_{E} = \frac{V_{EE}}{R_{E}} = \frac{25V}{25K \Omega} = \underline{1}\underline{m}\underline{A}$$


$$I_{\rm C} = I_{\rm E} = \underline{1mA}$$

$$V_{c} = V_{cc} - I_{c} R_{c}$$

= 25V - (1mA)(5K)
= 20V

$$Vc = Vk = \underline{20V}$$

COMMON BASE AMPLIFIER CALCULATION (E.G. 2)

 If silicon types of transistor are used. Determine the output voltage for common base amplifier above

COMMON BASE AMPLIFIER CALCULATION (E.G. 2)

SOLUTION

Given; $R_{E} = 9 K\Omega$, $R_{L} = 4 K\Omega$, $V_{EE} = 22V$, $V_{CC} = -27V$, $V_{BE} = 0.7V$

Input section

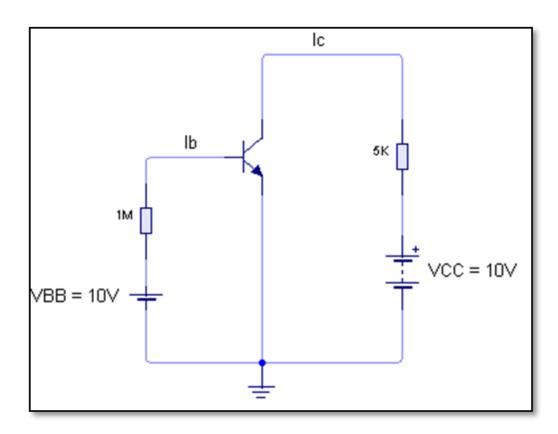
$$\begin{split} \mathbf{V}_{\mathrm{EE}} &= \mathbf{V}_{\mathrm{RE}} + \mathbf{V}_{\mathrm{BE}} \\ \mathbf{V}_{\mathrm{EE}} &= \mathbf{I}_{\mathrm{E}}.\mathbf{R}_{\mathrm{E}} + \mathbf{V}_{\mathrm{BE}} \end{split}$$

 $22V = I_{E}(9K\Omega) + 0.7V$

$$I_{\rm E} = \frac{22V - 0.7V}{9K\Omega}$$
$$= 2.37mA$$

Output section

$$I_c = I_E$$
$$I_c = 2.37 \text{mA}$$


$$V_{\rm RL} = I_{\rm C}.R_{\rm L}$$

= (2.37mA)(4K Ω)
= 9.47V.

$$V_{\rm C} = V_{\rm CC} - V_{\rm RL}$$
$$= 27V - 9.47V$$
$$= 17.5V$$

V_{cc} = -27V → In calculation, we only use the magnitude not the direction of the voltage.
 → Thus, in calculation we only used 27V

as voltage value

COMMON EMITTER AMPLIFIER CALCULATION (E.G. 3)

Based on figure above;

- i. If β transistor is 100 and it is a silicon type transistor, calculate the value for I_c and $V_c.$
- ii. If β transistor is 50, disregard the value of V_{BE}, calculate the value for I_c and V_c.

COMMON EMITTER AMPLIFIER CALCULATION (E.G. 3)

١

 I_B

• SOLUTION (i)

Given;

- $R_B = 1M\Omega$
- R_L = 5 KΩ
- V_{cc} = 10V
- V_{BB} = 10V
- V_{BE} = 0.7V
- β = 100

$$V_{BB} = V_B + V_{BE}$$

$$= \frac{V_{BB} - V_{BE}}{R_B}$$

$$I_B = \frac{10V - 0.7V}{1M} = 9.3\mu A$$

$$I_C = \beta I_B$$

$$I_C = 100 x 9.3 \mu$$

$$I_C = 0.93 mA$$

$$V_{CC} = V_{RL} + V_C V_C = V_{CC} - V_{RL} V_C = 10 V - (0.93mA x 5k\Omega) V_C = 5.35V$$

COMMON EMITTER AMPLIFIER CALCULATION (E.G. 3)

I_C

• SOLUTION (ii)

Given;

- $R_B = 1M\Omega$
- R_L = 5 K
- V_{CC} = 10V
- V_{BB} = 10V
- β = 50

 $V_{BB} = V_{B} + V_{BE} \qquad V_{BE} = 0V$ $I_{B} = \frac{V_{BB}}{R_{B}}$ $I_{B} = \frac{10V}{1M} = 10\mu A$ $I_{C} = \beta I_{B}$ $I_{C} = 50 \times 10\mu$

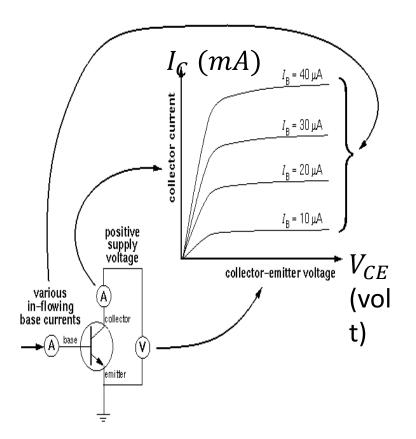
$$V_{CC} = V_{RL} + V_C$$

$$V_C = V_{CC} - V_{RL}$$

$$V_C = 10 V - (0.5mA x 5k\Omega)$$

$$V_C = 7.5V$$

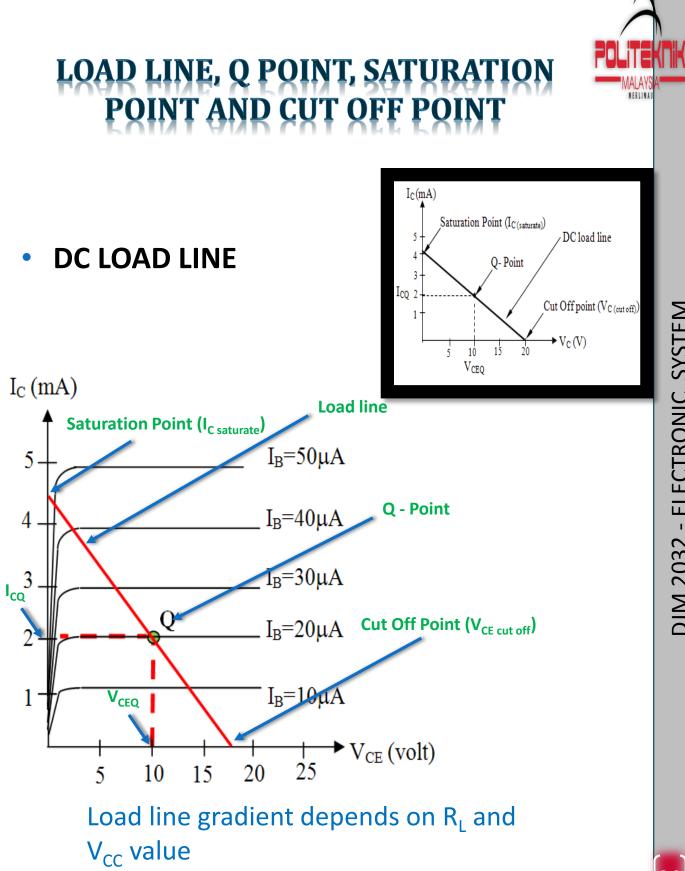
= 0.5mA



DC LOAD LINE •Q POINT •SATURATION POINT •CUT OFF POINT

gadaffi@pmm.edu.my

COMMON EMITTER AMPLIFIER CHARACTERISTIC CURVES


The I_c - V_c characteristic curve is the graph of a collector current versus collector voltage that describe the output of common emitter amplifier during any changes of voltage and current

 I_B value proportional to forward biased voltage value V_{BB} I_C value proportional to I_B

 I_{C} value is bigger (usually in mA)than to I_{B} (usually in μA)

- LOAD LINE
 - Line connecting saturation point, Q point and cut off point.
- **Q POINT (Quiescent Point)** (V_{CEQ} and I_{CQ})
 - Operational point is the point of intersection between V_{CEQ} and I_{CQ} .
 - V_{CEQ} = voltage at operational point. (V_{CE} = V_{CEQ})
 - I_{CQ} = current at operational point. (I_{C} = I_{CQ})
- SATURATION POINT (*I_{C saturate}*)
 - Point where the value of I_c is maximum, it's happened when there was no output voltage $(V_c @ V_K = 0V)$.
- CUT OFF POINT (V_{C cut off})
 - Point where the value of V_c is maximum, it's happened when there was no output current (
 I_c = 0A)

LOAD LINE CALCULATION (E.G 1)

• Refer to figure below, draw the dc load line and Q point. (assume $\beta = 100$)

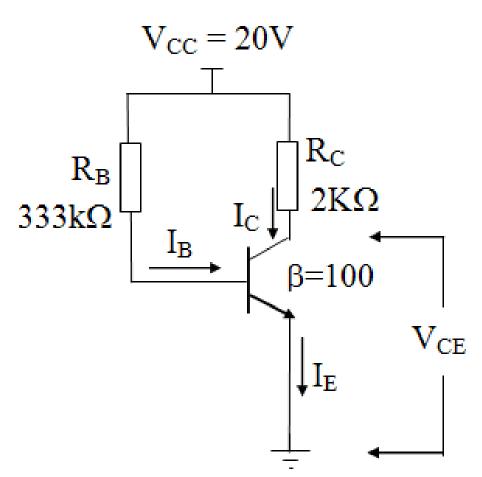


Figure : Common Emitter Amplifier Circuit

LOAD LINE CALCULATION (E.G 1)

SOLUTION

$$\mapsto I_{B} = \frac{V_{BB}}{R_{B}}$$

$$= \frac{20V}{333k\Omega}$$

$$= \underline{60\mu A}$$

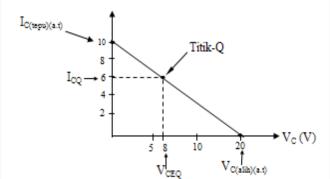
$$\mapsto I_{C} = \beta I_{B} = (100)(60\mu A)$$

$$= \underline{6mA}$$

$$\mapsto V_{C} = V_{CC} - I_{C} R_{L}$$

$$= 20V - (6mA)(2k\Omega)$$

$$= 20V - 12V$$

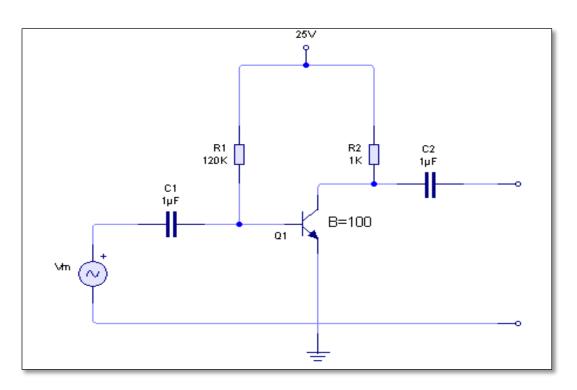

$$= \underline{8V}$$

$$\Rightarrow V_{CQ} = V_{C} = \underline{8V}$$

$$\Rightarrow I_{CQ} = I_{C} = \underline{6mA}$$

$$\mapsto I_{C(\text{saturate})(\text{dc})} = \frac{V_{CC}}{R_L}$$
$$= \underline{10mA}$$
$$\mapsto I_C = 0$$
$$\mapsto V_{C(\text{cut off})(\text{dc})} = V_{CC} = \underline{20V}$$

 $\mapsto I_{C(\text{saturate})(\text{dc})}$



LOAD LINE CALCULATION (E.G 2)

- Based on figure below, calculate;
 - i. Ic
 - ii. Vc
 - iii. AC saturation Ic
 - iv. AC cut off voltage

Assume the transistor is ideal

LOAD LINE CALCULATION (E.G 2)

SOLUTION

Given;

- R_B = 120 KΩ
- R_L = 1 KΩ
- V_{cc} = 25V
- V_{BB} = 25V
- β = 100

 $V_{BB} = V_B + V_{BE}$ $V_{BE} = 0V$ = $I_B \times R_B$

 $I_B = \frac{V_{BB}}{R_B}$

$$I_B = \frac{25V}{120K} = 208.33 \mu A$$

 $I_C = \beta . I_B$ = 100 x 208.33 μ = 20.83 mA

 $V_{CC} = V_{RL} + V_C$ $V_C = V_{CC} - V_{RL}$ $V_C = 25 V - (20.83mA x 1k\Omega)$ $V_C = 4.167V$

$$I_{C(saturation)} ==> V_{C} = 0$$

$$V_{C(cut off)} ==> I_{C} = 0$$

$$I_{C(saturation)} = \frac{V_{CC}}{R_{L}}$$

$$I_{C(saturation)} = \frac{25V}{1K}$$

$$I_{C(saturation)} = 25mA$$

$$V_{C(cut off)} = V_{CC}$$

$$V_{C(cut off)} = 25V$$

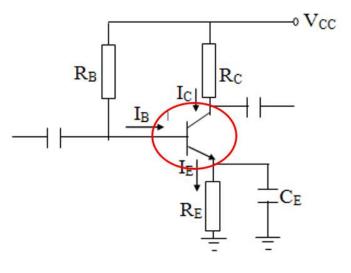
gadaffi@pmm.edu.my

COMMON EMITTER AMPLIFIER ENHANCEMENT TECHNIQUE

 BIASING TECHNIQUES OF COMMON EMITTER TRANSISTOR

BIASED VOLTAGE DIVIDER

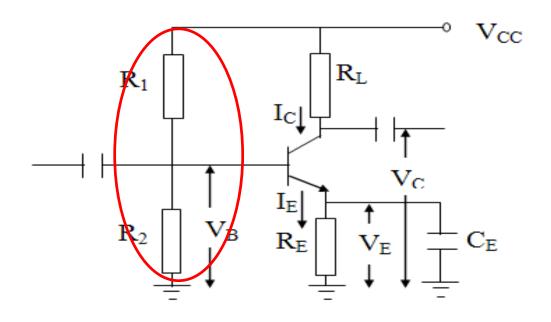
gadaffi@pmm.edu.my


BIASING TECHNIQUES OF COMMON EMITTER TRANSISTOR CONFIGURATION

- β is a gain produced by common emitter amplifier has a downside due to its relation with leakage current when the circuit temperature rises.
- To eliminate β weakness, stable biasing technique were introduced, which is;
 - base biased with emitter feedback
 - biased voltage divider technique

BASE BIASED WITH EMITTER FEEDBACK

• Addition of R_E and C_E before I_E current grounded.


 $I_E \ \uparrow \ V_{RE} \ \uparrow \ V_{RB} \ \downarrow$

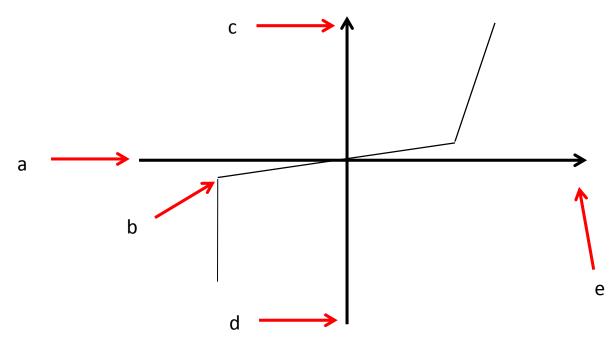
- R_E act as stabilizer for operational current (output current I_C).
- *R_E* will decrease the gain value due to increasing of voltage drop across the R_E resistance.
- *C_E* act as a shunt capacitor to RE and reduce input resistance.

BIASED VOLTAGE DIVIDER TECHNIQUE

 Addition of R₂ to make a voltage divider circuit in input side of amplifier.

FINAL EXAM QUESTIONS (1)

JUNE 2014


- 1. Explain the operation of ideal diode. (3M)
- Explain TWO main conditions in biasing a transistor. (6M)
- 3. Explain the following terms based on the characteristic curves of SCR. (12M)
 - i. Forward Blocking Current
 - ii. Reverse Blocking Current
 - iii. Holding Current
 - iv. Break over Voltage
- 4. Differentiate between SCR and TRIAC. (4M)

FINAL EXAM QUESTIONS (2)

JUNE 2013

- 1. Draw and label the schematic symbol of diode. (1M)
- 2. Explain the operation of diode when in forward bias and reverse bias. (4M)
- Draw the schematic of a LED and state 3 characteristic of a LED. (5M)
- 4. Draw and label the structure and schematic symbol of transistor NPN and PNP. (7M)
- 5. Based on figure below; (8M)
 - i. Label the I-V characteristic curve for zener diode.
 - ii. Explain the advantages between zener diode and normal diode.

40

FINAL EXAM QUESTIONS (3)

DEC 2012

- Draw and label the schematic symbol of component below; (15M)
 - i. LED
 - ii. FET
 - iii. TRIAC
 - iv. NPN Transistor
 - v. PNP Transistor
- State 3 differences between Field Effect Transistor (FET) and Bipolar Junction Transistor (BJT).
 (6M)
- Explain the concept of ideal diode during forward bias and reverse bias. (4M)

FINAL EXAM QUESTIONS (4)

JAN 2010

- Draw and label the symbol and structure of diode. (2M)
- 2. Sketch and label an I-V curve of silicon diode and define the following terms.
 - i. Forward current
 - ii. Reverse current
 - iii. Knee Voltage
 - iv. Breakdown voltage
 - v. Burn limit (12M)
- State 2 bias conditions for transistor operation. (2M)
- 4. Transistors have 3 terminals. Describe the function of the following terminals;
 - i. Emitter
 - ii. Base
 - iii. Collector (6M)
- List 3 function of SCR.
 (3M)

FINAL EXAM QUESTIONS (5)

APR 2007

- Draw schematic symbol of a LED.
 (3M)
- 2. Sketch and label an I-V curve of silicon diode and define the following terms.
 - i. Forward current
 - ii. Reverse current
 - iii. Breakdown voltage
 - iv. Knee voltage (10M)
- 3. State 2 bias conditions for enable a transistor to operate. (4M)
- Draw a structure diagram and schematic symbol for; (8M)
 - i. transistor **NPN**
 - ii. transistor **PNP**

JAN 2007

- 1. Sketch and label an I-V curve of silicon diode and define the following terms.
 - i. Forward current
 - ii. Reverse current
 - iii. Knee Voltage
 - iv. Breakdown voltage
 - v. Burn limit (8M)
- State 3 advantages of a zener diode compared to a normal diode. (3M)
- Draw the structure diagram and schematic symbol for a SCR. (4M)
- 4. State 3 method can be used to stop a SCR operation. (6M)
- State 2 differences between DIAC and TRIAC.
 (4M)

REFERENCES

- 1. Albert Malvino, D. B. (2015). Electronic principle. India: McGraw-Hill.
- L.Floyd, T. (2012). Electronics Devices. (9th-Edition. ed.). india: Prentice Hall.
- 3. Nosbelsky., R. B. (2013). Electronic Devices and Circuit Theory. (11st Edition ed.). NY: Prentice Hall.
- 4. Schuler., C. A. (2017). Electronics Principles and Application. NY: McGraw.
- 5. Storey, N. (2017). Electronics: A Systems Approach. NY: Pearson

