

## SURVEY

ADJUSTMENT

# ©ePembelajaran Politeknik Merlimau 

Writer<br>Noor Faizah Binti Zohardin

## Published in 2021

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanic methods, without the prior written permission of the writer, except in the case of brief quotations embodied in reviews and certain other non-commercial uses.
2.Goverment publications-Malaysia.
3. Electronic book.
I. Title.
526.9

## Published by:

Politeknik Merlimau, Melaka
KB1031 Pej Pos Merlimau,
77300 Merlimau Melaka

## PREFACE

SURVEY ADJUSTMENT provides the students with knowledge on adjustment. The book emphasizes the calculation of adjustment using the least square adjustment method through observation and condition equations in solving surveyed data. Besides, it is also provides students with knowledge and practical skills to calculate and adjust surveyed data.

This book is written specifically to satisfy the syllabus requirements for subject DCG 50192 Survey Adjustment. This book contains all required topics for Diploma Geomatic.

This book contains 5 chapter that have been planned and arranged carefully base on the syllabus of Polytechnic Malaysia. All concepts for each topic are accompanied by detail explanations, followed by example and complete solutions.

## Chapter 1 : INTRODUCTION TO SURVEY ADJUSTMENT

This topic describes the purposes of survey adjustment distinguish the mathematical and functional models from the statistical model

## Chapter 2 : STATISTICAL SAMPLE

This topic explains the measurement of central tendency and measurement of dispersion and how the matrix variance covariance is derived,

## Chapter 3 : VARIANCE- COVARIANCE PROPAGATION

This topic focuses on the calculation of variance-covariance propagation, derivative formula variance-covariance propagation for linear functions, non -linear functions. Solve the partial differential calculation. Application of the variance covariance propagation calculation linear case and nonlinear cases.

Chapter 4 : WEIGHT OF OBSERVATION
This topic focuses on the calculation of weight of observation, the concept of weight in survey observation.

## Chapter 5 : LEAST SQUARE ADJUSTMENT APPLICATIONS

This topic demonstrates the steps in solving the Least Square, method of equation, the concept of Least Square Adjustment, how the Normal Equation is derived, the principles of Least Square and how the variancecovariance matrix for the parameter X is calculated.

## TABLE OF CONTENTS

Page
Chapter 1:
Introduction to Survey Adjustment ..... 1-6
Chapter 2:
Statistical Sample and Analysis ..... 7-26
Chapter 3:
Matrices and Variance-Covariance ..... 27-38
Chapter 4:
Weight of observation ..... 39-52
Chapter 5:
Least Square Adjustment ..... 53-86
Reference ..... 87
66
Good measurement required a combination of human skill and mechanical equipment ..... 59

# Chapłer 1: Introduction to Survey Adjustment 

## ADJUSTMENT

- Adjustment is a process of making measured values of a quantity more accurate before they are used in the computations for the determination of points position that are associated with the measurements
- The method of estimating and distributing random errors in the observed values in order to make it conform to certain geometrical conditions, hence the resulted/adjusted values are known as the most probable values for the quantity involves.


## PURPOSE OF SURVEY ADJUSTMENT

- To make sure final survey value accurate and close to the truth as possible
- To evaluate and measure the confidence in result
- To determine how accurate each value is
- To estimating and distributing random errors in the observed values
- To reduce error size when making measurement
- To analyst the error and adjust the data
- To analysing and adjusting survey data
- To identify the Accuracy standard for survey obtained from least square adjustment


## MATHEMATICAL MODEL

Table 1.1 : Mathematical Model

| FUNCIIONAL MODEL | SIOCHASTIC MODEL |
| :--- | :--- |
| Adjustment computations is an <br> equation or set of <br> equations/functions that represents <br> or defines an adjustment condition | The determination of variances, and <br> subsequently the weights of the <br> observations |
| To describe a system or physical <br> condition | To describe probability variable like <br> observation |
| Equations used in modeling <br>  <br> condition equations]; express <br> geometrical relationship between <br>  <br> parameters (coordinates) | Describes random/stochastic <br> property of observations in the form <br> of weight [standard deviation] of <br> observation, controls weights of <br> observations [control the correction |

## ACCURACY AND PRECISION

Table 1.2 : Different between accuracy and precision

| Accuracy | Precision |
| :--- | :--- |
| Degree of closeness between the <br> mean of observations and the true | Degree of closeness of observation <br> values. The closer the values the <br> higher the precision of the <br> observation |
| How closely a measurement or <br> Observation comes to measuring a <br> true value. | Degree of refinement/consistency <br> Of a group of observations, and is <br> evaluated on <br> Basic of discrepancy size |
| The absolute nearness of the <br> measured quantity <br> To its true value [smaller difference <br> means high accuracy] | The nearness of the measured <br> quantity to its average/mean |
| Includes both random \& systematic <br> Effects | Includes only random effects |


|  | Accurate | Not accurate |
| :---: | :---: | :---: |
| Precise | $(2)$ |  |
|  |  |  |

Figure 1.1: Comparison between accuracy and precise

ERROR IN SURVEY MEASUREMENT


Figure 1.2 : Source of error in Survey Observation

## TYPES OF ERROR

## Gross error

- The result of blunders or mistakes that are due to carelessness of the observer.
- They are not classified as errors and must be removed from any set of observations.


## Systematic error

- These errors follow some physical law and thus these errors can be predicted.
- Some systematic errors are removed by following correct measurement


## Random error

- These are the errors that remain after all mistakes and systematic errors have been removed from the measured value.
- the result of human and instrument imperfections.

Table 1.3 : Types of error

| Gross Error | Systematic Error | Random Error |
| :--- | :--- | :--- |
| caused by confusion or <br> by an observer's <br> carelessness. | Biases <br> - Factor more to <br> measuring system | Remain in measurement <br> after gross and systematic <br> errors have been <br> eliminated. |
|  |  |  |

## TUTORIAL

1. Determine purpose of survey adjustment
2. Justify advantages of Survey adjustment
3. Describe the term of accuracy and precision in land survey.
4. Explain the types of error in measurement
i. Gross error
ii. Systematic error
iii. Random error
5. Sketch a suitable diagram and state the meaning of accuracy and precision
6. Explain the source of error in measurement
i. Instrument error
ii. Natural error
iii. Personal error
7. Explain two types of Mathematic Model
i. Functional Model
ii. Stochastic Model

## Chapter 2: Statistic \& Analysis

## Numerical Statistical Sample

## Mean

Mean is the average of the observation.

$$
\begin{gathered}
\bar{x}=\frac{\sum x}{n} \\
\bar{x}=\text { mean } \\
\sum x=\text { total of observation } \\
n=\text { number of observation }
\end{gathered}
$$

## Mode

most commonly observed value in a set of data

## Median

- The midpoint of sample data set when arranged in ascending or descending order.
- If number of sample data is even, the average of the two observations at middle data set is used to reprehend as median


## Range

Range is the different between the highest and lowest value. It provides an indication of the precision of the data
range = max value of observation - min value of observation

## Middle range

The middle range or middle extreme is a measure of central tendency of a sample data defined as the arithmetic mean of the maximum and minimum values of the data set.
max value of observation + min value of observation
mid range $=\frac{\text { max value of observation }+}{2}$

## Example 1

An EDM instrument and reflector are set at the ends of a baseline. Its length is measured 9 times with the following results. Calculate mean, median, mode, range.

| 60.214 | 60.217 | 60.214 |
| :--- | :--- | :--- |
| 60.215 | 60.211 | 60.219 |
| 60.214 | 60.213 | 60.212 |

## Answer

Table 2.1 : rearrange data in ascending odder

| Observation | Height |
| :---: | :---: |
| 1 | 60.211 |
| 2 | 60.212 |
| 3 | 60.213 |
| 4 | 60.214 |
| 5 | 60.214 |
| 6 | 60.214 |
| 7 | 60.215 |
| 8 | 60.217 |
| 9 | 60.219 |
| TOTAL |  |
|  |  |
|  |  |
|  |  |

$$
\begin{aligned}
& \text { mean }=\frac{\sum x}{n}=\frac{481.718}{9}=60.214 \\
& \text { mode }=60.214 \\
& \text { median }=60.214 \\
& \text { range }=60.211-60.219=0.008
\end{aligned}
$$

## Example 2

Base on table 2.1, calculate mean, median, mode, range \& middle range

Table 2.2 : Observation data

| Observation | Height |
| :---: | :---: |
| 1 | 35.421 |
| 2 | 35.432 |
| 3 | 35.425 |
| 4 | 35.423 |
| 5 | 35.425 |
| 6 | 35.421 |
| 7 | 35.425 |
| 8 | 35.430 |
| 9 | 35.420 |
| 10 | 35.419 |

## Answer

Mean $=\frac{345.241}{10}=34.424$
Range $=35.432-35.419=0.013$

Middle range $=\frac{35.432+35.419}{2}=35.4255$
Median $=\frac{35.432+35.425}{2}=35.424$


Figure 2.1 : Step to get median and mode

Table 2.3 : Answer for this question

| ITEM | value |
| :--- | :---: |
| mean | 35.424 |
| mode | 35.425 |
| median | 35.424 |
| range | 0.013 |
| middle range | 35.4255 |

## Population

Population consists of all possible measurement that can be made on a particular item or procedure. Often, a population has an infinite number of data element.

## Sample

Sample is a subset of data selected from the population.

## True value

A quantity's theoretically correct or exact value
The true value is simply the population's arithmetic mean if all repeated observations have equal precision.

1. No measurement is exact
2. Every measurement contains errors
3. The true value of measurement is never known
4. The exact size of the error present is always unknown

## Error Propagation

Error Propagation is the distribution of error

## Most probable value

The most probable value is that value for a measured quantity which based on the observation, has the highest probability of occurrence.

## Error

- The difference between a measured value for any quantity and its true value.
- Error exists in all observation

$$
\begin{gathered}
\varepsilon=y-\mu \\
\varepsilon=\text { the error in a observation } \\
y=\text { the measured value } \\
\mu=\text { true value }
\end{gathered}
$$

## Residual

- A residual is the difference between any individual measured quantity and the most probable value for that quantity.
- Residuals are the values that are used in adjustment computations since most probable values can be determined.
- The term error is frequently used when residual is meant, and although they are very similar and behave in the same manner, there is this theoretical distinction.
- Residual = computed value [or mean] - observed value

$$
v=\bar{x}-x
$$

$$
v=\text { the residual in the observation }
$$

$\bar{x}=$ most probable value for the unknown
$x=$ individual observation

## Degree of freedom or redundancies

- The degrees of freedom are the number of observations that are in excess of the number necessary to solve for the unknowns.
- The number of degrees of freedom equals the number of redundant observations


## Variance

- This is a value by which the precision is given for a set of data.
- The mean of the square of the errors

$$
S^{2}=\frac{\sum(x-\bar{x})^{2}}{n-1}
$$

$\boldsymbol{S}^{2}=$ variance
$x=$ observation data
$\bar{x}=$ mean od data set
$n=$ number of observation

## Standard error

The square root of the population variance

## Standard variation

- The square root of the sample variance
- Small std. dev = good data/good observation

Small std. dev = small changing/ a bit movement of structure/land slide

$$
\begin{gathered}
s=\sqrt{s^{2}} \\
s=\text { std.deviation } \\
s^{2}=\text { variance }
\end{gathered}
$$

## Standard variance of mean

The mean is computed from the sample standard deviation

## Covariance

- Covariance is Correlation between the two unknow variable.
- If the covariance value decreases, the Correlation of the variable also decreases.
- Correlation coefficient and Covariance give an indication of the relationship between variables.

$$
\begin{gathered}
\sigma_{x y}=\frac{\sum(x-\bar{x})(y-\bar{y})}{n-1} \\
\sigma_{x y}=\text { covariance } \\
x=\text { observation data for } 1 \text { st variable } \\
\bar{x}=\text { mean for data set } x \\
y=\text { observation data for } 2 n d \text { variable } \\
\bar{y}=\text { mean for data set } x \\
n=\text { number of observation }
\end{gathered}
$$

## Correlation coefficient



Figure 2.2 : Correlation coefficient must between 1 to -1 only

- A correlation coefficient of 1 means that amount for variable $A$ increase in (almost) perfect correlation with variable B
- A correlation coefficient of $\mathbf{- 1}$ means that the amount of variable $A$ decrease in (almost) perfect correlation with variable B
- Zero means that no correlation between two variables.


$$
\begin{gathered}
\boldsymbol{\rho}_{x y}=\text { correlation coefficient } \\
\sigma_{x y}=\text { covariance } \\
x=\text { observation data for } 1 \text { st variable } \\
\bar{x} \& \bar{y}=\text { mean for data set } \\
y=\text { observation data for } 2 n d \text { variable }
\end{gathered}
$$

Table 2.4: Correlation coefficient data analysis

| Correlation value | Result |
| :---: | :---: |
| $\mathbf{0}$ | Completely uncorrelated |
| $\mathbf{1}$ | Completely positively correlated |
| $\mathbf{- 1}$ | Completely negative correlated |
| $\mathbf{0}<\boldsymbol{\rho}_{x y}<\mathbf{0 . 3 5}$ | Weak correlation |
| $\mathbf{0 . 3 5}<\boldsymbol{\rho}_{x y}<\mathbf{0 . 7 5}$ | Significant correlation |
| $\mathbf{0 . 7 5}<\boldsymbol{\rho}_{\boldsymbol{x y}}<\mathbf{1}$ | Strong correlation |


| Statistic Formula |  |  |
| :---: | :---: | :---: |
| Variance : $S^{2}=\frac{\sum(x-\bar{x})^{2}}{n-1}$ | Standard Deviation: $s= \pm \sqrt{\text { variance }, s^{2}}$ | Correlation Coefficient: $\begin{aligned} \rho_{x y} & =\frac{\sum(x-\bar{x})(y-\bar{y})}{\sqrt{\sum(x-\bar{x})^{2} \cdot \sum(y-\bar{y})^{2}}} \\ \rho_{x y} & =\frac{\sigma_{x y}}{\sigma_{x} \cdot \sigma_{y}} \end{aligned}$ |
| Variance for arithmetic mean: $=\frac{s^{2}}{n}$ | Std. dev for arithmetic mean $=\frac{s}{\sqrt{n}}$ | covarience: $\sigma_{x y}=\frac{\sum(x-\bar{x})(y-\bar{y})}{n-1}$ |
| $S^{2}=$ variance for sample $x=\text { data } \quad \bar{x}=m e a n$ <br> $\sigma^{2}=$ variance for population |  |  |

Figure 2.3: statistic formula

## Example 3

Find variance, $s^{2}$ and standard deviations for height observation. Find correlation coefficient, $\rho_{x y}$ between height and volume covariance.

Table 2.5 : Observation for height and volume

| Observation | Height, $\mathbf{x}$ | Volume, $\mathbf{y}$ |
| :---: | :---: | :---: |
| $\mathbf{1}$ | 35.421 | 5313 |
| $\mathbf{2}$ | 32.552 | 4883 |
| $\mathbf{3}$ | 33.210 | 4982 |
| $\mathbf{4}$ | 33.213 | 4982 |
| $\mathbf{5}$ | 30.441 | 4566 |
| $\mathbf{6}$ | 29.554 | 4433 |
| $\mathbf{7}$ | 35.487 | 5323 |
| $\mathbf{8}$ | 36.481 | 5472 |
| $\mathbf{9}$ | 35.420 | 5313 |
| $\mathbf{1 0}$ | 36.221 | 5433 |

## NOTE :

For this question, create table like table 2.4
Follow the formula to solve this question

STEP 1 : Create table
Table 2.6 : Answer sheet

| Obs | Height, $\mathbf{x}$ | Volume, $\mathbf{y}$ | $(\boldsymbol{x}-\overline{\boldsymbol{x}})$ | $(\boldsymbol{y}-\overline{\boldsymbol{y}})$ | $(\boldsymbol{x}-\overline{\boldsymbol{x}})^{\mathbf{2}}$ | $(\boldsymbol{y}-\overline{\boldsymbol{y}})^{\mathbf{2}}$ | $(\boldsymbol{x}-\overline{\boldsymbol{x}}) \cdot(\boldsymbol{y}-\overline{\boldsymbol{y}})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 35.421 | 5313 | 1.621 | 243 | 2.628 | 59049 | 393.9 |
| 2 | 32.552 | 4883 | -1.248 | -187 | 1.558 | 34969 | 233.38 |
| 3 | 33.210 | 4982 | -0.59 | -88 | 0.348 | 7744 | 51.92 |
| 4 | 33.213 | 4982 | -0.587 | -88 | 0.345 | 7744 | 51.656 |
| 5 | 30.441 | 4566 | -3.359 | -504 | 11.283 | 254016 | 1692.9 |
| 6 | 29.554 | 4433 | -4.246 | -637 | 18.029 | 405769 | 2704.7 |
| 7 | 35.487 | 5323 | 1.687 | 253 | 2.846 | 64009 | 426.81 |
| 8 | 36.481 | 5472 | 2.681 | 402 | 7.188 | 161604 | 1077.8 |
| 9 | 35.420 | 5313 | 1.62 | 243 | 2.624 | 59049 | 393.66 |
| 10 | 36.221 | 5433 | 2.421 | 363 | 5.861 | 131769 | 878.82 |
| TOTAL | 338.000 | 50700.000 |  |  | 52.709 | $\mathbf{1 1 8 5 7}$ |  |

Step 3 : Calculate mean for sample, $\bar{x}$ and $\bar{y}$

$$
\text { mean, } \begin{aligned}
\bar{x} & =\frac{\sum x}{n} \\
& =\frac{338}{10} \\
& =33.8 \\
\text { mean, } \bar{y} & =\frac{\sum y}{n} \\
& =\frac{50700}{10} \\
& =5070
\end{aligned}
$$

Step 3 : Calculate variance for sample, $s^{2}$

$$
\text { Variance } x, \begin{aligned}
S^{2} & =\frac{\sum(x-\bar{x})^{2}}{n-1} \\
& =\frac{52.709}{9} \\
& =5.856509
\end{aligned}
$$

Variance $y, S^{2}=\frac{\sum(y-\bar{y})^{2}}{n-1}$

$$
\begin{aligned}
& =\frac{1185722}{9} \\
& =131746.889
\end{aligned}
$$

## Step 4 : Calculate standard deviation for sample, s

std. dev $x, s= \pm \sqrt{\text { variance }, s^{2}}$

$$
\begin{aligned}
& =\sqrt{5.856509} \\
& =2.420023
\end{aligned}
$$

std.dev $\boldsymbol{y}, \boldsymbol{s}= \pm \sqrt{\text { variance, } s^{2}}$

$$
\begin{aligned}
& =\sqrt{131746.889} \\
& =362.970
\end{aligned}
$$

Step 5 : Calculate covariance for sample, $\sigma_{x y}$

$$
\text { Covariance } \begin{aligned}
\sigma_{x y} & =\frac{\sum(\boldsymbol{x}-\overline{\boldsymbol{x}})(\boldsymbol{y}-\overline{\boldsymbol{y}})}{\boldsymbol{n}-\mathbf{1}} \\
& =\frac{7905.549}{9} \\
& =878.394
\end{aligned}
$$

Step 6 : Calculate correlation coefficient, $\boldsymbol{\rho}_{x y}$

$$
\begin{aligned}
\boldsymbol{\rho}_{x y} & =\frac{\sum(\boldsymbol{x}-\overline{\boldsymbol{x}})(\boldsymbol{y}-\overline{\boldsymbol{y}})}{\sqrt{\sum(\boldsymbol{x}-\overline{\boldsymbol{x}})^{2} \cdot \sum(\boldsymbol{y}-\overline{\boldsymbol{y}})^{2}}} \\
& =\frac{7905.549}{\sqrt{(52.709)^{*}(1185722)}}
\end{aligned}
$$

$$
=0.99
$$

## Example 4

Table 2.7 show the data obtained from distance measurement work. Calculate mean, mean error, variance and standard deviation.

Table 2.7 : Observation table

| Observation | Distance, $\mathbf{x}$ |
| :---: | :---: |
| 1 | 35.421 |
| 2 | 32.552 |
| 3 | 33.210 |
| 4 | 33.213 |
| 5 | 30.441 |
| 6 | 29.554 |

## Answer

## STEP 1 : Create table

Table 2.8 : Answer sheet

| Observation | Distance, x | Mean error <br> $(\boldsymbol{x}-\overline{\boldsymbol{x}})$ | $\left(\boldsymbol{x}-\overline{\boldsymbol{x})^{2}}\right.$ |
| :---: | :---: | :---: | :---: |
| 1 | 40.209 | -0.003 | 0.000009 |
| 2 | 40.207 | -0.005 | 0.000025 |
| 3 | 40.211 | -0.001 | 0.000001 |
| 4 | 40.219 | 0.007 | 0.000049 |
| 5 | 40.206 | -0.006 | 0.000036 |
| 6 | 40.218 | 0.006 | 0.000036 |
| TOTAL | $\mathbf{2 4 1 . 2 7 0}$ |  | $\mathbf{0 . 0 0 0 1 5 6}$ |

Step 2 : Calculate mean for sample, $\bar{x}$

$$
\text { mean, } \begin{aligned}
\bar{x} & =\frac{\sum x}{n} \\
& =\frac{241.270}{6} \\
& =33.8
\end{aligned}
$$

Step 3 : Calculate variance for sample, $s^{2}$

$$
\text { Variance } x, \begin{aligned}
S^{2} & =\frac{\sum(x-\bar{x})^{2}}{n-1} \\
& =\frac{0.000156}{6} \\
& =2.6 \times 10^{-5}
\end{aligned}
$$

Step 4 : Calculate standard deviation for sample, s
std. dev $\boldsymbol{x}, \boldsymbol{s}= \pm \sqrt{\text { variance }, s^{2}}$

$$
\begin{aligned}
& =\sqrt{2.6 \times 10^{-5}} \\
& =0.005
\end{aligned}
$$

## Example 5

The given data are: -Calculate standard deviation and covariance

> variance, $\sigma_{x}^{2}=0.3035 \mathrm{~cm}^{2}$
> variance, $\sigma_{y}^{2}=0 . .5421 \mathrm{~cm}^{2}$

Correlation coefficient, $\rho_{x y}=0.892$

Standard deviation x. $\sigma_{x}=\sqrt{\sigma_{x}^{2}}$

$$
\begin{aligned}
& =\sqrt{0.3035} \\
& =0.5509
\end{aligned}
$$

Standard deviation y. $\sigma_{y}=\sqrt{\sigma_{y}^{2}}$

$$
\begin{aligned}
& =\sqrt{0.5421} \\
& =0.7362744
\end{aligned}
$$

$$
\text { Covariance, } \begin{aligned}
\sigma_{x y} & =\rho_{x y} \times \sigma_{x} \cdot \sigma_{y} \\
& =0.892 \times 0.635216 \times 0.7362744 \\
& =0.4171824051
\end{aligned}
$$

Note :

$$
\rho_{x y}=\frac{\sigma_{x y}}{\sigma_{x} \cdot \sigma_{y}}
$$

## Tutorial

1. Describe the term of
i. Mean
ii. Median
iii. Mode
iv. Range
v. Middle range
2. Describe the term of
i. Variance
ii. Standard deviation
3. Explain different between error and residual
4. Table 2.8 shows the data obtained from angle measurement work. Calculate mean, mean error, variance and standard deviation.

Table 2.8: Observation data

| Observation | Angle |
| :---: | :---: |
| 1 | $60^{\circ} 20^{\prime} 15^{\prime \prime}$ |
| 2 | $60^{\circ} 20^{\prime} 20^{\prime \prime}$ |
| 3 | $60^{\circ} 19^{\prime} 55^{\prime \prime}$ |
| 4 | $60^{\circ} 20^{\prime} 25^{\prime \prime}$ |
| 5 | $60^{\circ} 20^{\prime} 30^{\prime \prime}$ |
| 6 | $60^{\circ} 19^{\prime} 50 \prime$ |

5. From the numerical data set, calculate mean, mode, and variance

| 50.412 | 50.400 | 50.421 |
| :--- | :--- | :--- |
| 50.412 | 50.420 | 50.419 |
| 50.415 | 50.417 | 50.412 |

6. Table 2.9 shows the data obtained from angle measurement work. Calculate variance, standard deviation, covariance and correlation coefficient.

Table 2.9: Observation data

| Obs. | Distance (X) meter | Distance (Y) meter |
| :---: | :---: | :---: |
| 1 | 39.110 | 48.550 |
| 2 | 39.020 | 48.700 |
| 3 | 39.680 | 48.900 |
| 4 | 39.450 | 48.880 |
| 5 | 39.770 | 48.654 |

# Chapłer 3: Variance-Covariance Propagation 

## Variance

- This is a value by which the precision is given for a set of data.
- The mean of the square of the errors.


## Covariance

- Covariance is coloration between the two unknow variable.
- If the covariance value decreases, the coloration of the variable also decreases


## Properties of variance-covariance matrix

1. Symmetric matrix
2. Determinant of covariance matrix should not equal to zero
3. All diagonal element in covariance matrix must positive


## Example 1

$$
\sigma_{y}^{2}=\left[\begin{array}{cc}
70 & 23.4 \\
23.4 & 36.5
\end{array}\right]
$$

$$
\begin{gathered}
\text { variance, } \sigma=y_{1}=70 ; y_{2}=36.5 \\
\text { covariance }=23.4
\end{gathered}
$$

Table 3.1: Properties of variance-covariance matrix

| Symmetric matrix | Diagonal element positive |
| :---: | :---: |
| $A=\left[\begin{array}{ll} 4 & 2 \\ 2 & 1 \end{array}\right]$ <br> matrix $A=$ matrix $\boldsymbol{A}^{\boldsymbol{T}}$ | $A=\left[\begin{array}{ll} 4 & 2 \\ 2 & 1 \end{array}\right]$ <br> All diagonal element $+v e$ |
| $A=\left[\begin{array}{ll} 4 & 27 \\ 3 & 1 \end{array}\right]$ <br> Not symmetric | $A=\left[\begin{array}{ll} -4 & 2 \\ 2 & 1 \end{array}\right]$ <br> One of diagonal element negative |

## LOPOV - Law of Propagation of Variance (Error)

$$
y=x_{1}+x_{2}+c_{1}
$$



$$
y \pm \sigma_{y}=\left(x_{1} \pm \sigma_{x 1}\right)+\left(x_{1} \pm \sigma_{x 1}\right)
$$

## Variance- covariance

$$
\sigma_{y}^{2}=A \sigma_{x}^{2} A^{T}
$$

In matric form, if the $\mathbf{n}$ unknow are indepandance, so covariance element in matrix is zero.

$$
\sigma_{y}^{2}=\left[\begin{array}{ll}
\frac{\partial_{y}}{\partial_{x_{1}}} & \frac{\partial_{y}}{\partial_{x_{1}}}
\end{array}\right] \cdot\left[\begin{array}{cc}
\sigma_{x_{1}}^{2} & \sigma_{x 1 x 2} \\
\sigma_{x 2 x 1} & \sigma_{x_{2}}^{2}
\end{array}\right] \cdot\left[\begin{array}{c}
\frac{\partial_{y}}{\partial_{x_{1}}} \\
\frac{\partial_{y}}{\partial_{x_{1}}}
\end{array}\right]
$$

## For nonlinear problem

$$
\sigma_{y}^{2}=\left(\frac{\partial y}{\partial x_{1}} \cdot \sigma_{x_{1}}\right)^{2}+\left(\frac{\partial y}{\partial x_{2}} \cdot \sigma_{x_{2}}\right)^{2}
$$

## STEP BY STEP FOR NONLINEAR PROBLEMS

1. Identify the suitable formula
2. Differentiation each element from formula
3. Substitute into nonlinear equation
4. Find estimated Standard deviation /estimated error

## Differentiation notes

| Equation | $1^{\text {st }}$ derivative |
| :---: | :--- |
| $y=a x$ | $\frac{\partial y}{\partial x}=a$ |
| $y=a x^{n}$ | $\frac{\partial y}{\partial x}=n \cdot a \cdot x^{n-1}$ |
| $y=a x^{n}+b x$ | $\frac{\partial y}{\partial x}=n \cdot a \cdot x^{n-1}+b$ |
| $y=\sin \theta$ | $\frac{\partial y}{\partial x}=\cos \theta$ |
| $y=\cos \theta$ | $\frac{\partial y}{\partial x}=-\sin \theta$ |
| $y=a \sin \theta$ | $\frac{\partial y}{\partial x}=a \cos \theta$ |

## Example 2: Differentiation notes

1. Find first derivative for $y$ respect to $b$

$$
\begin{aligned}
& y=2 b^{3}+C b \\
& \frac{d y}{d b}=3 \times 2 b^{3-1}+C \\
& =6 b^{2}+C
\end{aligned}
$$

2. Find first derivative for D respect to $\beta$

$$
\begin{aligned}
D & =23.10 \cos \beta \\
\frac{d D}{d \beta} & =23.10(-\sin \beta) \\
& =-23.10 \sin \beta
\end{aligned}
$$

## Example 3 : Matric form



## Step 1 : Model the equation observation

$B A C=C A-B A$
$C A D=D A-C A$

## Step 2 : Apply LOPOV

$$
\begin{aligned}
\sigma_{y}^{2} & =A \sigma_{x}^{2} A^{T} \\
& =\left[\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
2^{2} & 0 & 0 \\
0 & 4^{2} & 0 \\
0 & 0 & 7^{2}
\end{array}\right] \cdot\left[\begin{array}{cc}
-1 & 0 \\
1 & -1 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-4 & 16 & 0 \\
0 & -16 & 49
\end{array}\right] \cdot\left[\begin{array}{cc}
-1 & 0 \\
1 & -1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
20 & -16 \\
-16 & 65
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { std.dev } v_{B A C}=\sqrt{20} ; \quad \text { std.dev } v_{C A D}=\sqrt{65} . \\
& \text { correlation }=\frac{-16}{\sqrt{20 \times 65}}
\end{aligned}
$$

Angle BAC $=60^{\circ} \pm 4.47{ }^{\prime \prime}$
Angle $B A C=75^{\circ} \pm 8.06^{\prime \prime}$

## Example 4 : Nonlinear problem

The dimensions of a rectangular tank are measured. Calculate the tank's volume and its estimated standard deviation using the measurements above.

| Dimension, meter | Std. dev, meter |
| :---: | :---: |
| $H=7.500$ | $\pm 0.010$ |
| $W=3.000$ | $\pm 0.007$ |
| $L=4.200$ | $\pm 0.004$ |



## Step 1 : Identify the suitable formula

Volume rectangular, $V=L W H$

$$
\begin{aligned}
& V=7.5 \times 3.0 x \times 4.2 \\
& V=94.500 \text { meter }^{3}
\end{aligned}
$$

## Step 2 : Differentiation each element from formula

$$
V=L W H
$$

Derivative of $V$ with respect to $L$

$$
\frac{\partial V}{\partial L}=W H=3.0 \times 7.5=22.5 \mathrm{~m}
$$

## Note:

Find $1^{\text {st }}$ derivative of $V$ with respect to $L, W$ and $H$

Derivative of $V$ with respect to $W$

$$
\frac{\partial V}{\partial W}=L H=4.2 \times 7.5=31.5 \mathrm{~m}
$$

Derivative of V with respect to H

$$
\frac{\partial V}{\partial H}=L W=4.2 \times 3.0=12.6 \mathrm{~m}
$$

## Step 3 : Substitute into nonlinear equation

$$
\begin{aligned}
S_{v} & =\sqrt{\left(\frac{\partial V}{\partial L} \cdot S_{L}\right)^{2}+\left(\frac{\partial V}{\partial W} \cdot S_{W}\right)^{2}+\left(\frac{\partial V}{\partial H} \cdot S_{H}\right)^{2}} \\
& =\sqrt{(22.5 \times 0.004)^{2}+(31.5 \times 0.007)^{2}+(12.6 \times 0.010)^{2}} \\
& =\sqrt{0.09^{2}+0.2205^{2}+0.126^{2}} \\
& =0.269 \mathrm{~m}
\end{aligned}
$$

Step 4 : Standard deviation for volume

$$
V=94.500 \text { meter }^{3} \pm 0.269
$$

## Example 6:

A slope distance is observed as $120.221 \pm 0.008 \mathrm{~m}$. the vertical angle is observed as $88^{\circ} 40^{\prime} 10 \pm 8.8^{\prime \prime}$. what are the horizontal distance and its estimated error.


## Step 1 : Identify the suitable formula

$$
\begin{aligned}
& \text { Horizontal angle, } H_{D}=S_{D} \sin \theta \\
& \qquad \begin{aligned}
H_{D} & =120.221 \sin 88^{\circ} 40^{\prime} 10^{\prime \prime} \\
H_{D} & =120.189 \mathrm{~m}
\end{aligned}
\end{aligned}
$$

## Step 2 : Differentiation each element from formula

$$
H_{D}=S_{D} \sin \theta
$$

Derivative of $H_{D}$ with respect to $S_{D}$

$$
\begin{aligned}
\frac{\partial H_{D}}{\partial S_{D}} & =\sin \theta \\
& =\sin 88^{\circ} 40^{\prime} 10^{\prime \prime}=0.99973
\end{aligned}
$$

Derivative of $H_{D}$ with respect to $\theta$

$$
\begin{aligned}
\frac{\partial H_{D}}{\partial \theta} & =S(\cos \theta) \\
& =120.221 \cos 88^{\circ} 40^{\prime} 10^{\prime \prime} \\
& =2.7916
\end{aligned}
$$

## Step 3 : Substitute into nonlinear equation

$$
\begin{aligned}
S_{H_{D}} & =\sqrt{\left(\frac{\partial H_{D}}{\partial S_{D}} \cdot S_{S_{d}}\right)^{2}+\left(\frac{\partial H_{D}}{\partial \theta} \cdot S_{\theta}\right)^{2}} \\
& =\sqrt{(0.99973 \cdot 0.008)^{2}+\left(2.7916 \cdot\left(8.8 \times \frac{\pi}{180}\right)\right)^{2}} \\
& =0.008 \mathrm{~m}
\end{aligned} \begin{aligned}
& \begin{array}{c}
\text { Change } \\
\text { degree to } \\
\text { radians }
\end{array}
\end{aligned}
$$

Step 4 : Standard deviation for horizontal distance

$$
H_{D}=120.189 \mathrm{~m} \pm 0.008
$$

## Example 7:

The radius of a given tank is $13.00 \mathrm{~m} \pm 0.003 \mathrm{~m}$. Its height is $26.00 \mathrm{~m} \pm 0.006 \mathrm{~m}$. The mathematical model for the tank volume is $V=\pi r^{2} h$. Calculate
i. Volume of Standard tank
ii. Std. deviation of the volume

## Step 1 : Identify the suitable formula

$$
\text { Volume, } \begin{aligned}
V & =\pi r^{2} h \\
& =\pi(13)^{2} 26 \\
& =13804.158 \mathrm{~m}^{3}
\end{aligned}
$$

$$
13.00 \mathrm{~m} \pm 0.013 \mathrm{~m}
$$



## Step 2 : Differentiation each element from formula

$$
V=\pi r^{2} h
$$

Derivative of $\vee$ with respect to $r$

$$
\frac{d v}{d r}=2 \pi r h=2 \pi(13)(26)=2123.717
$$

## Note:

Find $1^{\text {st }}$ derivative of $V$ with respect to $r$ and $h$

Derivative of $V$ with respect to $h$

$$
\frac{d v}{d h}=\pi r^{2}=\pi(13)^{2}=530.929
$$

## Step 3 : Substitute into nonlinear equation

$$
\begin{aligned}
S_{V} & =\sqrt{\left(\frac{d v}{d r} \cdot s_{r}\right)^{2}+\left(\frac{d v}{d h} \cdot s_{h}\right)^{2}} \\
S_{V} & =\sqrt{(2123.717 \times 0.013)^{2}+(530.929 \times 0.026)^{2}} \\
& =30.867
\end{aligned}
$$

Step 4 : Standard deviation for volume

$$
V=13804.158 m^{3} \pm 30.867
$$

## Example 8

The measured height of the cone is $2.500 \pm 0.020 \mathrm{~m}$. The measured radius is $1.500 \pm 0.002 \mathrm{~m}$. Calculate the variance covariance propagation of the volume.

## Step 1 : Identify the suitable formula

$$
\text { Volume, } \begin{aligned}
V & =\frac{1}{3} \pi r^{2} h \\
& =\frac{1}{3} \pi(1.5)^{2} 2.5 \\
& =5.890 \mathrm{~m}^{3}
\end{aligned}
$$


$1.500 \pm 0.002 \mathrm{~m}$

Step 2 : Differentiation each element from formula

$$
V=\frac{1}{3} \pi r^{2} h
$$

Derivative of $V$ with respect to $r$

$$
\frac{d V}{d r}=\frac{2}{3} \pi r h=\frac{2}{3} \pi(1.5)(2.5)=7.854 \mathrm{~m}
$$

## Note:

Find $1^{\text {st }}$ derivative of $\vee$ with respect to $r$ and $h$

Derivative of $V$ with respect to $h$

$$
\frac{d V}{d h}=\frac{1}{3} \pi r^{2}=\frac{1}{3} \pi(1.5)^{2}=2.356 \mathrm{~m}
$$

Step 3 : Substitute into nonlinear equation

$$
\begin{aligned}
& \sigma_{V}=\sqrt{\left(\frac{d V}{d r} \cdot \sigma_{r}\right)^{2}+\left(\frac{d V}{d h} \cdot \sigma_{h}\right)^{2}} \\
= & \sqrt{(7.854 \times 0.002)^{2}+(2.356 \times 0.020)^{2}} \\
= & 0.050
\end{aligned}
$$

## Step 4 : Standard deviation for volume

$$
V=5.890 \mathrm{~m}^{3} \pm 0.05
$$

TUTORIAL

1. A slope distance is observed as $60.752 \pm 0.008 \mathrm{~m}$. The vertical angle is observed as $87^{\circ} 23^{\prime} 10 \pm 6.5^{\prime \prime}$. What are the horizontal distance and its estimated error.
2. A horizontal distance is observed as $30.455 \pm 0.008 \mathrm{~m}$ from the building A. The vertical angle is observed as $71^{\circ} 14^{\prime} 20 \pm 8.8^{\prime \prime}$. What are the height of building of and its estimated error.
3. A storage tank in the shape of cylinder has a measured height of $12.2 \pm 0.023 \mathrm{~m}$ and a radius of $2.3 \pm 0.005 \mathrm{~m}$. What are the tank's volume and estimated error in this volume.
4. A rectangular container has dimensions of $5.5 \pm 0.004 \mathrm{~m}$ by $7.45 \pm$ 0.005 m . What is the area of the parcel and the estimated area in this area.
"You can't claim you tried everything if you never got up in the last third of the night to ask Allah for it"

## Chapter 4: Weight of Observation

## Weight Of Observation

- A measure of an observation's worth compared to other observations.
- Weight is a positive number assigned to an observation that indicates the relative accuracy to other observations
- Weight ae used to control the sizes of corrections applied to observation in an adjustment.
- The more precise an observation, the higher its weight
- The smaller the variance, the higher the weight.
- With uncorrelated observations, weights of the observations are inversely proportional to their variances.

$$
w=\frac{1}{\sigma^{2}}
$$

$$
\begin{gathered}
w=\text { weight } \\
\sigma^{2}=\text { variance }
\end{gathered}
$$

## For levelling

$$
\begin{gathered}
w=\frac{1}{d} \\
w=\text { weight } \\
d=\text { distance }
\end{gathered}
$$

## Weighted Mean

A mean value computed from weighted observations. Weighted mean is the most probable value for a set of weighted observation.

$$
\begin{gathered}
\bar{z}=\frac{\sum x(w)}{\sum w} \\
\bar{z}=\text { weighted mean } \\
x=\text { observation data } \\
w=\text { weight }
\end{gathered}
$$

## Standard deviation of weighted mean

$$
\begin{gathered}
S_{\bar{z}}=\sqrt{\frac{\sum w v^{2}}{\left(\sum w\right)(n-1)}} \\
S_{\bar{z}}=\text { std.dev of weighted mean } \\
\quad w=\text { weight } \\
v=\text { residual } \\
n=\text { number of observation }
\end{gathered}
$$

Std. dev of weighted for observation

$$
S_{n}=\sqrt{\frac{\sum w v^{2}}{w_{n}(n-1)}}
$$

$S_{n}=$ std.dev of weighted for observation

$$
w=\text { weight }
$$

$$
v=\text { residual (mean, } \bar{z}-\text { observation }, x)
$$

$n=$ number of observation

Std. dev of weighted unit

$$
\begin{gathered}
S_{w}=\sqrt{\frac{\sum w v^{2}}{(n-1)}} \\
S_{w}=\text { std.dev of weighted unit } \\
w=\text { weight } \\
v=\text { residual } \\
n=\text { number of observation }
\end{gathered}
$$

## Example 1

Data for distance is observed using three different types of instrument. Calculate:-
i.Weight mean
ii.Std. dev of weighted mean
iii.Std. dev of weighted observation
iv.Std. dev of weighted unit

| Instrument | Distance AB | Weight |
| :--- | :---: | :---: |
| EDM | 15.231 | 3 |
| Disto meter | 15.235 | 2 |
| Tape | 15.220 | 1 |

## Step 1: Calculate Weight mean

$$
\text { weight mean, } \begin{aligned}
\bar{z} & =\frac{\sum x(w)}{\sum w} \\
\bar{z} & =\frac{15.231(3)+15.235(2)+15.220(1)}{3+2+1}=15.2305
\end{aligned}
$$

## Step 2: Create table

| Instrument | Distance AB, $\boldsymbol{x}$ | Weight | $\boldsymbol{v}=\overline{\mathbf{z}}-\boldsymbol{x}$ | $\boldsymbol{w} \cdot \boldsymbol{v}^{\mathbf{2}}$ |
| :--- | :---: | :---: | :---: | :---: |
| EDM | 15.231 m | 3 | 0.0005 | $7.5 \times 10^{-7}$ |
| Disto <br> meter | 15.235 m | 2 | 0.0045 | $4.05 \times 10^{-5}$ |
| Tape | 15.220 m | 1 | 0.0105 | $1.1 \times 10^{-4}$ |
| Total |  |  |  |  |

## Step 3: Calculate std. dev of weighted mean

$$
\begin{aligned}
\text { std. dev of weighted mean, } S_{\bar{z}} & =\sqrt{\frac{\sum w v^{2}}{\left(\sum w\right)(n-1)}} \\
\qquad S_{\bar{z}} & =\sqrt{\frac{0.00015}{(6)(2)}}=0.0035 \mathrm{~m}
\end{aligned}
$$

Step 3: Calculate std. dev of weighted observation

$$
\text { std. dev of weighted observation, } S_{n}=\sqrt{\frac{\sum w v^{2}}{w_{n}(n-1)}}
$$

Std deviation of weighted observation distance using EDM

$$
S_{E D M}=\sqrt{\frac{0.00015}{3(2)}}=0.005 \mathrm{~m}
$$

Std deviation of weighted observation for distance using disto meter

$$
S_{D M}=\sqrt{\frac{0.00015}{2(2)}}=0.006 \mathrm{~m}
$$

Std deviation of weighted observation for distance using tape

$$
S_{T A P E}=\sqrt{\frac{0.00015}{1(2)}}=0.009 \mathrm{~m}
$$

## Step 4: Calculate std. dev of weight unit

$$
\begin{aligned}
\text { std. dev of weight unit, } S_{w} & =\sqrt{\frac{\sum w v^{2}}{(n-1)}} \\
\qquad S_{w} & =\sqrt{\frac{0.00015}{2}}=0.009 \mathrm{~m}
\end{aligned}
$$

## Example 2

An angle is observed on three different days with the following results, calculate: -
i.Weight mean
ii.Std. dev of weighted mean
iii.Std. dev of weighted observation
iv.Std. dev of weighted unit

| Day | Observation | Weight |
| :---: | :---: | :---: |
| 1 | $30^{\circ} 10^{\prime} 20^{\prime \prime}$ | 1 |
| 2 | $30^{\circ} 10^{\prime} 30^{\prime \prime}$ | 3 |
| 3 | $30^{\circ} 10^{\prime} 50^{\prime \prime}$ | 2 |
| 4 | $30^{\circ} 10^{\prime} 45^{\prime \prime}$ | 3 |
| 5 | $30^{\circ} 10^{\prime} 50^{\prime \prime}$ | 4 |

## Step 1 : Calculate weighted mean

$$
\text { weight mean, } \begin{aligned}
\bar{z} & =\frac{\sum x(w)}{\sum w} \\
\bar{z} & =\frac{392^{\circ} 19^{\prime} 05^{\prime \prime}}{13}=30^{\circ} 10^{\prime} 41.92^{\prime \prime}
\end{aligned}
$$

## Step 2 : create table

| day | Observation, x | Weight, w | $\boldsymbol{x} \times \boldsymbol{w}$ | $\boldsymbol{v}=\overline{\mathbf{z}}-\boldsymbol{x}$ | $\boldsymbol{w} \cdot \boldsymbol{v}^{\mathbf{2}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $30^{\circ} 10^{\prime} 20^{\prime \prime}$ | 1 | $30^{\circ} 10^{\prime} 20^{\prime \prime}$ | $21.92^{\prime \prime}$ | $0.13^{\prime \prime}$ |
| 2 | $30^{\circ} 10^{\prime} 30^{\prime \prime}$ | 3 | $90^{\circ} 31^{\prime} 30^{\prime \prime}$ | $11.92^{\prime \prime}$ | $0.12^{\prime \prime}$ |
| 3 | $30^{\circ} 10^{\prime} 50^{\prime \prime}$ | 2 | $60^{\circ} 21^{\prime} 40^{\prime \prime}$ | $-8.08^{\prime \prime}$ | $0.04^{\prime \prime}$ |
| 4 | $30^{\circ} 10^{\prime} 45^{\prime \prime}$ | 3 | $90^{\circ} 32^{\prime} 15^{\prime \prime}$ | $-3.08^{\prime \prime}$ | $0.01^{\prime \prime}$ |
| 5 | $30^{\circ} 10^{\prime} 50^{\prime \prime}$ | 4 | $120^{\circ} 43^{\prime} 20^{\prime \prime}$ | $-8.08^{\prime \prime}$ | $0.07^{\prime \prime}$ |
| total |  | 13 | $392^{\circ} 19^{\prime} 05^{\prime \prime}$ |  | $0.37^{\prime \prime}$ |

Step 3: Calculate std. dev of weighted mean

$$
\begin{aligned}
\text { std.dev of mean, } S_{\bar{z}} & =\sqrt{\frac{\sum w v^{2}}{\left(\sum w\right)(n-1)}} \\
\qquad S_{\bar{z}} & =\sqrt{\frac{0.37^{\prime \prime}}{(13)(4)}}=5.06^{\prime \prime}
\end{aligned}
$$

## Step 3: Calculate std. dev of weighted observation

$$
\text { std. dev of weighted observation }, S_{n}=\sqrt{\frac{\sum w v^{2}}{w_{n}(n-1)}}
$$

Std deviation of weighted observation for $1^{\text {st }}$ day

$$
S_{1}=\sqrt{\frac{0.37 "}{1(4)}}=18.25^{\prime \prime}
$$

Std deviation of weighted observation for $2^{\text {nd }}$ day

$$
S_{2}=\sqrt{\frac{0.37 "}{3(4)}}=10.54 "
$$

Std deviation of weighted observation for 3rd day

$$
S_{3}=\sqrt{\frac{0.37 "}{2(4)}}=12.9 "
$$

Std deviation of weighted observation for $4^{\text {th }}$ day

$$
S_{4}=\sqrt{\frac{0.37 "}{3(4)}}=10.54 "
$$

Std deviation of weighted observation for $5^{\text {th }}$ day

$$
S_{5}=\sqrt{\frac{0.37 "}{4(4)}}=9.12^{\prime \prime}
$$

## Step 4: Calculate std. dev of weight unit

$$
\begin{aligned}
\text { std. dev of weight unit, } S_{w} & =\sqrt{\frac{\sum w v^{2}}{(n-1)}} \\
\qquad S_{w} & =\sqrt{\frac{0.37^{\prime \prime}}{4}}=18.25^{\prime \prime}
\end{aligned}
$$

## Example 3

Based on data below, calculate: -

1. Calculate weight mean
2. Std. dev of weighted mean
3. Std. dev of weighted observation
4. Std. dev of weighted unit

| BIL | Distance, $\boldsymbol{x}_{\boldsymbol{i}}$ | Std. dev, $\boldsymbol{\sigma}_{\boldsymbol{x}}$ |
| :--- | :--- | :--- |
| 1 | 30.467 | $\pm 0.020$ |
| 2 | 30.453 | $\pm 0.014$ |
| 3 | 30.448 | $\pm 0.020$ |
| 4 | 30.457 | $\pm 0.010$ |
| 5 | 30.462 | $\pm 0.010$ |

## Step 1 : Calculate weight for each observation

$$
\text { weight, } \begin{aligned}
w & =\frac{1}{\sigma^{2}} \\
w_{1} & =\frac{1}{0.0004}=2500 \\
w_{2} & =\frac{1}{0.0002}=5000 \\
w_{3} & =\frac{1}{0.0004}=2500 \\
w_{4} & =\frac{1}{0.0001}=10000 \\
w_{5} & =\frac{1}{0.0001}=10000
\end{aligned}
$$

## Step 2: Calculate weight mean

$$
\begin{aligned}
\text { weight mean, } \bar{z} & =\frac{\sum x(w)}{\sum w} \\
\bar{z} & =\frac{913742.5}{30000}=304.581
\end{aligned}
$$

Step 3 : create table

| BIL | $\begin{gathered} \text { Distance, } \\ x_{i} \end{gathered}$ | Std. dev $\sigma_{x}$ | $\sigma^{2}$ | W | $\boldsymbol{w}$. $\boldsymbol{x}$ | $v$ | $v^{2} \cdot W$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 30.467 m | $\pm 0.020$ | 0.0004 | 2500 | 76167.5 | -0.0089 | 0.19802 |
| 2 | 30.453 m | $\pm 0.014$ | 0.0002 | 5000 | 152265 | 0.0051 | 0.13005 |
| 3 | 30.448 m | $\pm 0.020$ | 0.0004 | 2500 | 76120 | 0.0101 | 0.25503 |
| 4 | 30.457 m | $\pm 0.010$ | 0.0001 | 10000 | 304570 | 0.0011 | 0.0121 |
| 5 | 30.462 m | $\pm 0.010$ | 0.0001 | 10000 | 304620 | -0.0039 | 0.1521 |
|  | TOTAL |  |  | 30000 | 913742.5 | 0.0035 | 0.7473 |

## Step 3: Calculate std. dev of weighted mean

$$
\begin{aligned}
\text { std. dev of weighted mean, } S_{\bar{z}} & =\sqrt{\frac{\sum w v^{2}}{\left(\sum w\right)(n-1)}} \\
\qquad S_{\bar{z}} & =\sqrt{\frac{913742.5}{(30000)(4)}}=2.759 \mathrm{~m}
\end{aligned}
$$

## Step 3: Calculate std. dev of weighted observation

$$
\text { std. dev of weighted observation, } S_{n}=\sqrt{\frac{\sum w v^{2}}{w_{n}(n-1)}}
$$

Std deviation of weighted observation for $1^{\text {st }}$ data

$$
S_{1}=\sqrt{\frac{0.7473}{2500(4)}}=0.009 \mathrm{~m}
$$

Std deviation of weighted observation for $2^{\text {nd }}$ data

$$
S_{2}=\sqrt{\frac{0.7473}{5000(4)}}=0.006 \mathrm{~m}
$$

Std deviation of weighted observation for 3rd data

$$
S_{3}=\sqrt{\frac{0.7473}{2500(4)}}=0.009 \mathrm{~m}
$$

Std deviation of weighted observation for $4^{\text {th }}$ data

$$
S_{4}=\sqrt{\frac{0.7473}{10000(4)}}=0.004 \mathrm{~m}
$$

Std deviation of weighted observation for $5^{\text {th }}$ data

$$
S_{5}=\sqrt{\frac{0.7473}{10000(4)}}=0.004 \mathrm{~m}
$$

Step 4: Calculate std. dev of weight unit

$$
\begin{aligned}
\text { std. dev of weight unit, } S_{w} & =\sqrt{\frac{\sum w v^{2}}{(n-1)}} \\
\qquad S_{w} & =\sqrt{\frac{0.7473}{4}}=0.432 \mathrm{~m}
\end{aligned}
$$

## Tutorial

## Question 1

An angle was measured at four different times with the following results. What is the most probable value for the angle and the standard deviation in the mean.

| day | Observation, $x$ | Std. dev |
| :---: | :---: | :---: |
| 1 | $120^{\circ} 30^{\prime} 20^{\prime \prime}$ | $\pm 6.2^{\prime \prime}$ |
| 2 | $120^{\circ} 30^{\prime} 30^{\prime \prime}$ | $\pm 9.8^{\prime \prime}$ |
| 3 | $120^{\circ} 30^{\prime} 50^{\prime \prime}$ | $\pm 5.2^{\prime \prime}$ |
| 4 | $120^{\circ} 30^{\prime} 45^{\prime \prime}$ | $\pm 4.7^{\prime \prime}$ |

## Question 2

The distance of the routes and the observed differences in elevations are show below, calculate: -

1. Calculate weight mean
2. Std. dev of weighted mean
3. Std. dev of weighted observation
4. Std. dev of weighted unit

| route | Different <br> elevation | distance |
| :---: | :---: | :---: |
| 1 | 15.321 | 120 m |
| 2 | 15.350 | 98 m |
| 3 | 15.334 | 100 m |

## Chapter 5: Least Square Adjustment

## LEAST SQUARE ADJUSTMENT APPLICATIONS

- A least square adjustment (LSA) is method to estimate or adjust the observations to obtain the most accurate value on these observations using statistical analysis.
- LSE is a systematic \& simple method to compute estimated value of variables for unknown quantities from redundant measurements when then number of measurements more than number of variables
- Least-squares adjustment minimizes the sum of the squares of the residuals or weighted residuals.
- Condition of least squares adjustment: number of observations must equal or more than number of variables.
- LSE is not required if no redundant measurements


## Step by step to solve LSA problem

1. Model the observation equation
2. Create matrix $A, X$ and $L$
3. Find matrix $A^{T} A$
4. Find Determinant for $A^{T} A$
5. Find minor matrix for $A^{T} A$
6. Adjoint matrix $A^{T} A$
7. Inverse matrix $A^{T} A$
8. Find $A^{T} L$
9. Solve $x=\left(A^{T} A\right)^{-1} \cdot A^{T} L$

## EXAMPLE 1 : Distance

A baseline consists of four stations on a straight-line A, B, C and D are measured using Electronic Distance Measurement device. In order to determine the distance between the stations,

- Determine the number of observation (n) and variables (u).
- By using the matrix method, calculate the adjusted variables for the distance of $A B, B C$ and $C D$.

Table 4.1: Observation data for baseline

|  |  |
| :--- | :--- |
| AB | 25.051 |
| BC | 25.047 |
| CD | 25.110 |
| AC | 50.091 |
| BD | 50.150 |
| AD | 75.200 |

## Note :

1. Identify all the data given
2. Change the data into simple



Figure 4.1 : Convert data into simple figure

> Number of observation, $\mathrm{n}=6$
> Variables, $\mathrm{U}=3 \quad \mathrm{AB}, \mathrm{BC} \& \mathrm{CD}$

STEP 1 : Model the observation equation
$A B=25.051+V_{1}$
$B C=25.047+V_{2}$
$C D=25.110+V_{3}$
$A B+B C=50.091+V_{4}$
$B C+C D=50.150+V_{5}$
$A B+B C+C D=75.200+V_{6}$

STEP 2 : Create matrix $A, X$ and $L$

NOTE : Set matrix A base on variables value for each equation
$\mathrm{A}=\left[\begin{array}{ccc}\mathrm{AB} & \mathrm{BC} & \mathrm{CD} \\ \left.\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]\end{array}\right.$
$A B+B C+C D=75.200+V_{6}$
$\mathrm{A}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1\end{array}\right] ; \mathrm{X}=\left[\begin{array}{l}A B \\ B C \\ C D\end{array}\right] ; \mathrm{L}=\left[\begin{array}{l}25.051 \\ 25.047 \\ 25.110 \\ 50.091 \\ 50.150 \\ 75.200\end{array}\right]$

STEP 3 : Find matrix ( $\mathbf{A}^{\mathrm{T}} \mathbf{A}$ )
$A^{T} A=\left[\begin{array}{llllll}1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1\end{array}\right] \cdot\left[\begin{array}{lll}1 \\ 0 \\ 0 \\ 1 & 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 \\ 1 & 0 \\ 1 & 1 & 1\end{array}\right]$

$A^{T} A=\left[\begin{array}{lll}3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3\end{array}\right]$

STEP 4: Find Determinant for matrix ( $\mathrm{A}^{\mathrm{T}} \mathrm{A}$ )

$$
\begin{aligned}
& \operatorname{DET}\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)=\left[\begin{array}{lll}
3 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 3
\end{array}\right]\left[\begin{array}{lll}
3 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 2 \\
3
\end{array}\right] \quad\left[\begin{array}{lll}
3 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 3
\end{array}\right] \\
& =3\left[\begin{array}{ll}
4 & 2 \\
2 & 4
\end{array}\right] \\
& -2\left[\begin{array}{ll}
2 & 2 \\
1 & 3
\end{array}\right] \\
& +1\left[\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right] \\
& \begin{array}{l}
\begin{array}{l}
\text { NOTE: Follow } \\
\text { rule }
\end{array} \\
{\left[\begin{array}{lll}
+ & - & + \\
- & + & - \\
+ & - & +
\end{array}\right]}
\end{array} \\
& =3(12-4)-2(6-2)+1(4-4) \\
& =3(8)-2(4)+1(0) \\
& =24-8+0 \\
& =16
\end{aligned}
$$

STEP 5: Find minor matrix $A^{T} A$

|  | $\left[\begin{array}{lll}3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3\end{array}\right]$ | $\left[\begin{array}{lll}3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3\end{array}\right]$ | $\left[\begin{array}{lll}3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3\end{array}\right]$ |
| :---: | :---: | :---: | :---: |
| $\operatorname{minor}\left(A^{T} A\right)=$ | $\left[\begin{array}{lll}3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 2 \\ 1 & \end{array}\right.$ | $(3)$ 2 11 <br> 2 4 2 <br> $(1)$ 2 3 | $\left[\begin{array}{lll}3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3\end{array}\right]$ |
|  | $\left[\begin{array}{llll}3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 4 & 2 & 3\end{array}\right]$ | $\left[\begin{array}{lll} 3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3 \end{array}\right]$ | $\left[\begin{array}{lll}3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3\end{array}\right]$ |

$\operatorname{minor}\left(A^{T} A\right)=\left[\begin{array}{l}{\left[\begin{array}{ll}4 & 2 \\ 2 & 3\end{array}\right]\left[\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right]\left[\begin{array}{ll}2 & 4 \\ 1 & 2\end{array}\right]} \\ {\left[\begin{array}{ll}2 & 1 \\ 2 & 3\end{array}\right]\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right]\left[\begin{array}{ll}3 & 2 \\ 1 & 2\end{array}\right]} \\ {\left[\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right]\left[\begin{array}{ll}3 & 1 \\ 2 & 2\end{array}\right]\left[\begin{array}{ll}3 & 2 \\ 2 & 4\end{array}\right]}\end{array}\right]$
$\operatorname{minor}\left(A^{T} A\right)=\left[\begin{array}{ccc}12-4 & 6-2 & 4-4 \\ 6-2 & 9-1 & 6-2 \\ 4-4 & 6-2 & 12-4\end{array}\right]=\left[\begin{array}{lll}8 & 4 & 0 \\ 4 & 8 & 4 \\ 0 & 4 & 8\end{array}\right]$

## STEP 6 : Find Adjoint matrix ( $A^{T} A$ )

$\operatorname{Adj}\left(A^{T} A\right)=\left(\operatorname{cof} A^{T} A\right)^{T}$
$\operatorname{cofactor}\left(A^{T} A\right)=\operatorname{minor}\left(A^{T} A\right)\left[\begin{array}{lll}+ & - & + \\ - & + & - \\ + & - & +\end{array}\right]$

## Note :

## Adjoint matrix

$$
\operatorname{adj}\left(A^{T} A\right)=\left(\operatorname{cof} A^{T} A\right)^{T}
$$

So, for symmetric matrix

$$
\operatorname{adj}\left(A^{T} A\right)=\operatorname{cof}\left(A^{T} A\right)
$$

$\operatorname{Adj} A^{T} A=\left[\begin{array}{ccc}8 & -4 & 0 \\ -4 & 8 & -4 \\ 0 & -4 & 8\end{array}\right]$

## STEP 7: Matrix inverse ( $A^{T} A$ )

$$
\begin{aligned}
\left(A^{T} A\right)^{-1} & =\frac{1}{\operatorname{det}\left(A^{T} A\right)} \times \operatorname{adj}\left(A^{T} A\right) \\
& =\frac{1}{16} \times\left[\begin{array}{lll}
+8 & -4 & +0 \\
-4 & +8 & -4 \\
+0 & -4 & +8
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\frac{+8}{16} & \frac{-4}{16} & \frac{0}{16} \\
\frac{-4}{16} & \frac{8}{16} & \frac{-4}{16} \\
\frac{0}{16} & \frac{-4}{16} & \frac{+8}{16}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0.5 & -0.25 & 0 \\
-0.25 & 0.5 & -0.25 \\
0 & -0.25 & 0.5
\end{array}\right]
\end{aligned}
$$

## STEP 8: Find $\boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{L}$

$$
A^{T} L=\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right] \times\left[\begin{array}{l}
25.051 \\
25.047 \\
25.110 \\
50.091 \\
50.150 \\
75.200
\end{array}\right]
$$

$$
A^{T} L=\left[\begin{array}{c}
1(25.051)+0+0+1(50.091)+0+1(75.200) \\
0+1(25.047)+0+1(50.091)+1(50.150)+1(75.200) \\
0+0+1(25.110)+0+1(50.150)+1(75.200)
\end{array}\right]
$$

$$
A^{T} L=\left[\begin{array}{l}
150.342 \\
200.488 \\
150.460
\end{array}\right]
$$

STEP 9: Solve $x=\left(A^{T} A\right)^{-1} \cdot A^{T} L$

$$
x=\left(A^{T} A\right)^{-1} \cdot A^{T} L
$$

$$
\left[\begin{array}{c}
A B \\
B C \\
C D
\end{array}\right]=\left[\begin{array}{ccc}
0.5 & -0.25 & 0 \\
-0.25 & 0.5 & -0.25 \\
0 & -0.25 & 0.5
\end{array}\right] \times\left[\begin{array}{c}
150.342 \\
200.488 \\
150.460
\end{array}\right]
$$

$$
\left[\begin{array}{c}
A B \\
B C \\
C D
\end{array}\right]=\left[\begin{array}{c}
(0.5)(150.342)+(-0.25)(200.488)+(0)(150.460) \\
(-0.25)(150.342)+(0.5)(200.488)+(-0.25)(150.460) \\
(0)(150.342)+(-0.25)(200.488)+(0.5)(150.460)
\end{array}\right]=\left[\begin{array}{c}
25.049 \\
25.0435 \\
25.108
\end{array}\right]
$$

$A B=25.049 \mathrm{~m}$
$B C=25.0435 \mathrm{~m}$
$C D=25.108 \mathrm{~m}$

## Example 2

Between four points $A, B, C$ and $D$ situated on a straight line in pairs distances $A B, B C$, $C D, A C, A D$ and $B D$ were measured. The six measurements show in table. Calculate the distances of $A B, B C$ and $C D$ by means of linear least squares adjustment.

Table 4.2 : Observation data

| line | Distance, $m$ |
| :--- | :--- |
| AB | 30.17 |
| BC | 10.12 |
| CD | 20.25 |
| AC | 40.31 |
| AD | 60.51 |
| BD | 30.36 |



Figure 4.2 : Convert data into simple figure

## Step 1: Model the observation equation

$$
\begin{aligned}
& A B=30.17+V_{1} \\
& B C=10.12+V_{2} \\
& C D=20.25+V_{3} \\
& A B+B C=40.31+V_{4} \\
& A B+B C+C D=60.51+V_{5} \\
& B C+C D=30.36+V_{6}
\end{aligned}
$$

STEP 2: Create matrix $A, X$ and $L$

$$
\mathrm{A}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right] ; \mathrm{X}=\left[\begin{array}{c}
A B \\
B C \\
C D
\end{array}\right] ; \mathrm{L}=\left[\begin{array}{c}
30.17 \\
10.12 \\
20.25 \\
40.31 \\
60.51 \\
30.36
\end{array}\right]
$$

STEP 3: Find metric $A^{T} A$

$$
A^{T} A=\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right] \cdot\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
3 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 3
\end{array}\right]
$$

## STEP 4: Find Determinant for matrix ( $\mathrm{A}^{\mathrm{T}} \mathrm{A}$ )

$$
\operatorname{Det} A^{T} A=\left[\begin{array}{lll}
3 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 3
\end{array}\right]=3\left[\begin{array}{ll}
4 & 2 \\
2 & 3
\end{array}\right]-2\left[\begin{array}{ll}
2 & 2 \\
1 & 3
\end{array}\right]+1\left[\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right]=16
$$

STEP 5: Minor matrix for ( $\left.A^{T} A\right)$

$$
\text { Minor } \left.A^{T} A=\left[\begin{array}{ll}
{\left[\begin{array}{ll}
4 & 2 \\
2 & 3
\end{array}\right]} & {\left[\begin{array}{ll}
2 & 2 \\
1 & 3
\end{array}\right]}
\end{array}\left[\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right]\right]\left[\begin{array}{lll}
2 & 1 \\
2 & 3
\end{array}\right]\left[\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right]\left[\begin{array}{ll}
3 & 2 \\
1 & 2
\end{array}\right]\right]=\left[\begin{array}{lll}
8 & 4 & 0 \\
4 & 8 & 4 \\
0 & 4 & 8
\end{array}\right]
$$

STEP 6: Adjoint matrix $A^{T} A$
$\operatorname{Adj}\left(A^{T} A\right)=\left(\operatorname{cof} A^{T} A\right)^{T}$
$\operatorname{cofactor}\left(A^{T} A\right)=\operatorname{minor}\left(A^{T} A\right)\left[\begin{array}{lll}+ & - & + \\ - & + & - \\ + & - & +\end{array}\right]$

$$
\operatorname{Cof}\left(A^{T} A\right)=\left[\begin{array}{ccc}
8 & -4 & 0 \\
-4 & 8 & -4 \\
0 & -4 & 8
\end{array}\right] \quad \operatorname{Adj}\left(A^{T} A\right)=\left[\begin{array}{ccc}
8 & -4 & 0 \\
-4 & 8 & -4 \\
0 & -4 & 8
\end{array}\right]
$$

## STEP 7: Matrix inverse ( $A^{T} A$ )

$$
\begin{aligned}
\left(A^{T} A\right)^{-1} & =\frac{1}{\operatorname{det}\left(A^{T} A\right)}\left(\operatorname{adj}\left(A^{T} A\right)\right) \\
& =\frac{1}{16} \times\left[\begin{array}{ccc}
8 & -4 & 0 \\
-4 & 8 & -4 \\
0 & -4 & 8
\end{array}\right]=\left[\begin{array}{ccc}
0.5 & -0.25 & 0 \\
-0.25 & 0.5 & -0.25 \\
0 & -0.25 & 0.5
\end{array}\right]
\end{aligned}
$$

STEP 8: Find $A^{T} L$

$$
A^{T} L=\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
30.17 \\
10.12 \\
20.25 \\
40.31 \\
60.51 \\
30.36
\end{array}\right]=\left[\begin{array}{l}
130.99 \\
141.30 \\
111.12
\end{array}\right]
$$

STEP 9: Solve $x=\left(A^{T} A\right)^{-1} \cdot A^{T} L$
$x=\left(A^{T} A\right)^{-1} \cdot A^{T} L$

$$
\begin{aligned}
& {\left[\begin{array}{l}
A B \\
B C \\
C D
\end{array}\right]=\left[\begin{array}{ccc}
0.5 & -0.25 & 0 \\
-0.25 & 0.5 & -0.25 \\
0 & -0.25 & 0.5
\end{array}\right] \times\left[\begin{array}{c}
130.99 \\
141.30 \\
111.12
\end{array}\right]=\left[\begin{array}{c}
30.17 \\
10.1225 \\
20.235
\end{array}\right]} \\
& A B=30.170 \mathrm{~m} \\
& B C=10.1225 \mathrm{~m} \\
& C D=20.235 \mathrm{~m}
\end{aligned}
$$

## Example 3

EDM instrument is placed at point $A$ and reflector is placed successively at point $B, C$ and $D$. The observed value $A B, A C, A D, B C, C D$ are show in table. Calculate the unknown value $A B, B C$ and $C D$

Table 4.3 : Observation data

| line | Distance, m |
| :---: | :---: |
| $\mathbf{A B}$ | 10.231 |
| $\mathbf{A C}$ | 30.452 |
| $\mathbf{A D}$ | 52.223 |
| $\mathbf{B C}$ | 20.225 |
| $\mathbf{B D}$ | 41.995 |



Figure 4.3 : Convert data into simple figure

## Step 1: Model the observation equation

$$
\begin{aligned}
& A B=10.231+V_{1} \\
& A B+B C=30.452+V_{2} \\
& A B+B C+C D=52.223+V_{3} \\
& B C=20.225+V_{4} \\
& B C+C D=41.995+V_{5}
\end{aligned}
$$

STEP 2: Create matrix $A, X$ and $L$

$$
\mathrm{A}=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] ; \mathrm{X}=\left[\begin{array}{c}
A B \\
B C \\
C D
\end{array}\right] ; \mathrm{L}=\left[\begin{array}{l}
10.231 \\
30.452 \\
52.223 \\
20.225 \\
41.995
\end{array}\right]
$$

STEP 3: Find metric $A^{T} A$

$$
A^{T} A=\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
3 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 2
\end{array}\right]
$$

## STEP 4: Find Determinant for matrix ( $\mathbf{A}^{\mathrm{T}} \mathrm{A}$ )

$$
\operatorname{Det} A^{T} A=\left[\begin{array}{lll}
3 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 2
\end{array}\right]=3\left[\begin{array}{ll}
4 & 2 \\
2 & 2
\end{array}\right]-2\left[\begin{array}{ll}
2 & 2 \\
1 & 2
\end{array}\right]+1\left[\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right]=8
$$

STEP 5: Minor matrix for $\left(A^{T} A\right)$

$$
\text { Minor } \left.A^{T} A=\left[\begin{array}{ll}
{\left[\begin{array}{ll}
4 & 2 \\
2 & 2
\end{array}\right]} & {\left[\begin{array}{ll}
2 & 2 \\
1 & 2
\end{array}\right]}
\end{array}\left[\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right]\right]\left[\begin{array}{lll}
2 & 1 \\
2 & 2
\end{array}\right]\left[\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{ll}
3 & 2 \\
1 & 2
\end{array}\right]\right]=\left[\begin{array}{lll}
4 & 2 & 0 \\
2 & 5 & 4 \\
0 & 4 & 8
\end{array}\right]
$$

STEP 6: Adjoint matrix $\boldsymbol{A}^{T} \boldsymbol{A}$
$\operatorname{Adj}\left(A^{T} A\right)=\left(\operatorname{cof} A^{T} A\right)^{T}$
$\operatorname{cofactor}\left(A^{T} A\right)=\operatorname{minor}\left(A^{T} A\right)\left[\begin{array}{lll}+ & - & + \\ - & + & - \\ + & - & +\end{array}\right]$

$$
\operatorname{cof}\left(A^{T} A\right)=\left[\begin{array}{ccc}
4 & -2 & 0 \\
-2 & 5 & -4 \\
0 & -4 & 8
\end{array}\right] \quad \square \quad \operatorname{adj}\left(A^{T} A\right)=\left[\begin{array}{rcc}
4 & -2 & 0 \\
-2 & 5 & -4 \\
0 & -4 & 8
\end{array}\right]
$$

## STEP 7: Inverse matrix ( $A^{T} A$ )

$$
\begin{aligned}
\left(A^{T} A\right)^{-1} & =\frac{1}{\operatorname{det}\left(A^{T} A\right)}\left(\operatorname{adj}\left(A^{T} A\right)\right) \\
& =\frac{1}{8} \times\left[\begin{array}{ccc}
4 & -2 & 0 \\
-2 & 5 & -4 \\
0 & -4 & 8
\end{array}\right]=\left[\begin{array}{ccc}
0.5 & -0.25 & 0 \\
-0.25 & 0.625 & -0.5 \\
0 & -0.5 & 1
\end{array}\right]
\end{aligned}
$$

## STEP 8: Find matrix ( $A^{T} L$ )

$$
A^{T} L=\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
10.231 \\
30.452 \\
52.223 \\
20.225 \\
41.995
\end{array}\right]=\left[\begin{array}{c}
92.906 \\
144.895 \\
94.218
\end{array}\right]
$$

STEP 9: Solve $x=\left(A^{T} A\right)^{-1} \cdot A^{T} L$
$x=\left(A^{T} A\right)^{-1} \cdot A^{T} L$

$$
\left[\begin{array}{l}
A B \\
B C \\
C D
\end{array}\right]=\left[\begin{array}{ccc}
0.5 & -0.25 & 0 \\
-0.25 & 0.625 & -0.5 \\
0 & -0.5 & 1
\end{array}\right] \times\left[\begin{array}{c}
92.906 \\
144.895 \\
94.218
\end{array}\right]=\left[\begin{array}{c}
10.2293 \\
20.2239 \\
21.7705
\end{array}\right]
$$

$$
\begin{aligned}
\mathrm{AB} & =10.2293 \mathrm{~m} \\
\mathrm{BC} & =20.2239 \mathrm{~m} \\
C D & =21.7705 \mathrm{~m}
\end{aligned}
$$

## Example 4 : levelling

Given the height of point TBM 1 is 100.500 m . Calculate the adjusted height variable for points B, C and D using Least Square Adjustment observation equation method.

| FROM | TO | DIFFERENT HEIGHT |
| :--- | :--- | :--- |
| TBM 1 | B | 0.046 |
| B | D | 0.265 |
| TBM 1 | D | 0.312 |
| TBM 1 | C | -0.024 |
| C | B | 0.070 |
| C | D | 0.336 |



## Step 1: Model the observation equation

$B-A=0.046+V_{1}$
$D-B=0.265+V_{2}$
$D-A=0.312+V_{3}$
$C-A=-0.024+V_{4}$
$B-C=0.070+V_{5}$
$D-C=0.336+V_{6}$

## Insert known value

## New equation

$B-\mathbf{1 0 0 . 5}=0.046+V_{1}$
$D-B=0.265+V_{2}$
$D-\mathbf{1 0 0 . 5}=0.312+V_{3}$
$C-\mathbf{1 0 0 . 5}=-0.024+V_{4}$
$B-C=0.070+V_{5}$
$D-C=0.336+V_{6}$

$$
\begin{aligned}
& \mathrm{B}=100.546+\mathrm{V}_{1} \\
& D-B=0.265+V_{2} \\
& \mathrm{D}=100.812+\mathrm{V}_{3} \\
& \mathrm{C}=100.476+\mathrm{V}_{4} \\
& B-C=0.070+V_{5} \\
& D-C=0.336+V_{6}
\end{aligned}
$$

STEP 2: Create matrix $A, X$ and $L$

$$
\mathrm{A}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 0 & 1 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & -1 & 0 \\
0 & -1 & 1
\end{array}\right] ; \mathrm{X}=\left[\begin{array}{l}
B \\
C \\
D
\end{array}\right] ; \mathrm{L}=\left[\begin{array}{c}
100.546 \\
0.265 \\
100.812 \\
100.467 \\
0.070 \\
0.336
\end{array}\right]
$$

STEP 3: Find metric $A^{T} A$

$$
A^{T} A=\left[\begin{array}{cccccc}
1 & -1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & -1 & -1 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 0 & 1 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & -1 & 0 \\
0 & -1 & 1
\end{array}\right]=\left[\begin{array}{ccc}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right]
$$

STEP 4: Find Determinant for matrix ( $\mathrm{A}^{\mathrm{T}} \mathrm{A}$ )

$$
\operatorname{Det} A^{T} A=\left[\begin{array}{ccc}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right]=3\left[\begin{array}{cc}
3 & -1 \\
-1 & 3
\end{array}\right]-(-1)\left[\begin{array}{cc}
-1 & -1 \\
-1 & 3
\end{array}\right]+(-1)\left[\begin{array}{cc}
-1 & 3 \\
-1 & -1
\end{array}\right]=16
$$

STEP 5: Minor matrix for ( $A^{T} A$ )

$$
\text { Minor } A^{T} A=\left[\begin{array}{cc}
{\left[\begin{array}{cc}
3 & -1 \\
-1 & 3
\end{array}\right]} & {\left[\begin{array}{cc}
-1 & -1 \\
-1 & 3
\end{array}\right]}
\end{array}\left[\begin{array}{cc}
-1 & 3 \\
-1 & -1 \\
-1 & 3
\end{array}\right]\left[\begin{array}{cc}
3 & -1 \\
-1 & 3
\end{array}\right]\left[\begin{array}{ccc}
3 & -1 \\
-1 & -1
\end{array}\right]\left[\begin{array}{ccc}
8 & -4 & 4 \\
{\left[\begin{array}{cc}
-1 & -1 \\
3 & -1
\end{array}\right]} & {\left[\begin{array}{cc}
3 & -1 \\
-1 & -1
\end{array}\right]\left[\begin{array}{cc}
3 & -1 \\
-1 & 3
\end{array}\right]}
\end{array}\right] \begin{array}{cc}
8 & -4 \\
4 & -4
\end{array}\right]
$$

STEP 6: Adjoint matrix $\boldsymbol{A}^{T} A$
$\operatorname{Adj}\left(A^{T} A\right)=\left(\operatorname{cof} A^{T} A\right)^{T}$
$\operatorname{cofactor}\left(A^{T} A\right)=\operatorname{minor}\left(A^{T} A\right)\left[\begin{array}{lll}+ & - & + \\ - & + & - \\ + & - & +\end{array}\right]$

$$
\operatorname{Cof}\left(A^{T} A\right)=\left[\begin{array}{lll}
8 & 4 & 4 \\
4 & 8 & 4 \\
4 & 4 & 8
\end{array}\right] \quad \operatorname{adj}\left(A^{T} A\right)=\left[\begin{array}{lll}
8 & 4 & 4 \\
4 & 8 & 4 \\
4 & 4 & 8
\end{array}\right]
$$

## STEP 7: Matrix inverse ( $A^{T} A$ )

$$
\begin{aligned}
\left(A^{T} A\right)^{-1} & =\frac{1}{\operatorname{det}\left(A^{T} A\right)}\left(\operatorname{adj}\left(A^{T} A\right)\right) \\
& =\frac{1}{16} \times\left[\begin{array}{lll}
8 & 4 & 4 \\
4 & 8 & 4 \\
4 & 4 & 8
\end{array}\right]=\left[\begin{array}{ccc}
0.5 & 0.25 & 0.25 \\
0.25 & 0.5 & 0.25 \\
0.25 & 0.25 & 0.5
\end{array}\right]
\end{aligned}
$$

## STEP 8: Find $A^{T} L$

$$
A^{T} L=\left[\begin{array}{cccccc}
1 & -1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & -1 & -1 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
100.546 \\
0.265 \\
100.812 \\
100.467 \\
0.070 \\
0.336
\end{array}\right]=\left[\begin{array}{l}
100.351 \\
100.061 \\
101.413
\end{array}\right]
$$

STEP 9: Solve $x=\left(A^{T} A\right)^{-1} \cdot A^{T} L$
$x=\left(A^{T} A\right)^{-1} \cdot A^{T} L$
$\left[\begin{array}{l}B \\ C \\ D\end{array}\right]=\left[\begin{array}{ccc}0.5 & 0.25 & 0.25 \\ 0.25 & 0.5 & 0.25 \\ 0.25 & 0.25 & 0.5\end{array}\right] \times\left[\begin{array}{l}100.351 \\ 100.061 \\ 101.413\end{array}\right]=\left[\begin{array}{c}100.544 \\ 100.4715 \\ 100.8095\end{array}\right]$
$B=100.544 \mathrm{~m}$
$C=100.472 \mathrm{~m}$
$D=100.810 \mathrm{~m}$

## EXAMPLE 5

Calculate the variables for the elevations of $A, B$ and $C$. Use the least square adjustment method. Given the elevation of BM 1 is 12.142 m and $\mathrm{BM} 2=10.523 \mathrm{~m}$

| FROM | TO | DIFFERENT HEIGHT |
| :---: | :---: | :---: |
| A | BM1 | -4.425 |
| BM 1 | C | 2.210 |
| C | B | -2.455 |
| C | BM2 | -3.827 |
| BM2 | B | 1.375 |
| BM2 | A | 6.040 |
| B | A | 4.664 |

## Step 1: Model the observation equation

$B M 1-A=-4.425+V_{1}$
$C-B M 1=2.210+V_{2}$
$B-C=-2.455+V_{3}$
$B M 2-C=-3.827+V_{4}$

D BM $2=10.523 \mathrm{~m}$

## NOTE :

- Different height = fore sight - back sight
- Insert know value into the equation
$B-B M 2=1.375+V_{5}$
$A-B M 2=6.040+V_{6}$
$A-B=4.664+V_{7}$

New equation after insert know value
$12.142-A=-4.425+V_{1}$
$C-12.142=2.210+V_{2}$
$B-C=-2.455+V_{3}$
$10.523-C=-3.827+V_{4}$
$B-10.523=1.375+V_{5}$
$A-10.523=6.040+V_{6}$
$A-B=4.664+V_{7}$

$$
\begin{aligned}
& A=16.567+V_{1} \\
& C=14.352+V_{2} \\
& B-C=-2.455+V_{3} \\
& C=14.350+V_{4} \\
& B=11.898+V_{5} \\
& A=16.563+V_{6} \\
& A-B=4.664+V_{7}
\end{aligned}
$$

STEP 2: Create matrix $A, X$ and $L$

$$
\mathrm{A}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & -1 & 0
\end{array}\right] \mathrm{X}=\left[\begin{array}{l}
A \\
B \\
C
\end{array}\right] ; \mathrm{L}=\left[\begin{array}{c}
16.576 \\
14.352 \\
-2.455 \\
14.350 \\
11.898 \\
16.563 \\
4.664
\end{array}\right]
$$

STEP 3: Find metric $A^{T} A$

$$
A^{T} A=\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & -1 \\
0 & 1 & -1 & 1 & 0 & 0 & 0
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & -1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
3 & -1 & 0 \\
-1 & 3 & -1 \\
0 & -1 & 3
\end{array}\right]
$$

## STEP 4: Find Determinant for matrix ( $\mathbf{A}^{\mathrm{T}} \mathrm{A}$ )

$$
\text { Det } A^{T} A=\left[\begin{array}{ccc}
3 & -1 & 0 \\
-1 & 3 & -1 \\
0 & -1 & 3
\end{array}\right]=3\left[\begin{array}{cc}
3 & -1 \\
-1 & 3
\end{array}\right]-(-1)\left[\begin{array}{cc}
-1 & -1 \\
0 & 3
\end{array}\right]+0\left[\begin{array}{cc}
-1 & 3 \\
0 & -1
\end{array}\right]=21
$$

STEP 5: Minor matrix for $\left(A^{T} A\right)$

$$
\text { Minor } A^{T} A=\left[\begin{array}{ccc}
{\left[\begin{array}{cc}
3 & -1 \\
-1 & 3
\end{array}\right]} & {\left[\begin{array}{cc}
-1 & -1 \\
0 & 3
\end{array}\right]} & {\left[\begin{array}{cc}
-1 & 3 \\
0 & -1
\end{array}\right]} \\
{\left[\begin{array}{cc}
-1 & 0 \\
-1 & 3
\end{array}\right]} & \left.\begin{array}{cc}
3 & 0 \\
0 & 3
\end{array}\right] & {\left[\begin{array}{cc}
3 & -1 \\
0 & -1
\end{array}\right]} \\
{\left[\begin{array}{cc}
-1 & 0 \\
3 & -1
\end{array}\right]} & {\left[\begin{array}{cc}
0 & 0 \\
-1 & -1
\end{array}\right]} & {\left[\begin{array}{ccc}
3 & -1 \\
-1 & 3
\end{array}\right]}
\end{array}\right]\left[\begin{array}{ccc}
-3 & 1 \\
-3 & -3 & 8
\end{array}\right]
$$

STEP 6: Adjoint matrix $\boldsymbol{A}^{T} A$
$\operatorname{Adj}\left(A^{T} A\right)=\left(\operatorname{cof} A^{T} A\right)^{T}$
$\operatorname{cofactor}\left(A^{T} A\right)=\operatorname{minor}\left(A^{T} A\right)\left[\begin{array}{lll}+ & - & + \\ - & + & - \\ + & - & +\end{array}\right]$

$$
\operatorname{cofactor}\left(A^{T} A\right)=\left[\begin{array}{lll}
8 & 3 & 1 \\
3 & 9 & 3 \\
1 & 3 & 8
\end{array}\right] \quad \square \operatorname{Adj}\left(A^{T} A\right)=\left[\begin{array}{lll}
8 & 3 & 1 \\
3 & 9 & 3 \\
1 & 3 & 8
\end{array}\right]
$$

## STEP 7: Inverse matrix ( $\boldsymbol{A}^{T} A$ )

$$
\begin{aligned}
\left(A^{T} A\right)^{-1} & =\frac{1}{\operatorname{det}\left(A^{T} A\right)}\left(\operatorname{cof} \operatorname{adj}\left(A^{T} A\right)\right) \\
& =\frac{1}{21} \times\left[\begin{array}{lll}
8 & 3 & 1 \\
3 & 9 & 3 \\
1 & 3 & 8
\end{array}\right]=\left[\begin{array}{ccc}
\frac{8}{21} & \frac{3}{21} & \frac{1}{21} \\
\frac{3}{21} & \frac{9}{21} & \frac{3}{21} \\
\frac{1}{21} & \frac{3}{21} & \frac{8}{21}
\end{array}\right]
\end{aligned}
$$

## STEP 8: Find matrix ( $A^{T} L$ )

$$
A^{T} L=\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & -1 \\
0 & 1 & -1 & 1 & 0 & 0 & 0
\end{array}\right] \cdot\left[\begin{array}{c}
16.576 \\
14.352 \\
-2.455 \\
14.350 \\
11.898 \\
16.563 \\
4.664
\end{array}\right]=\left[\begin{array}{c}
37.803 \\
4.779 \\
31.157
\end{array}\right]
$$

STEP 9: Solve $x=\left(A^{T} A\right)^{-1} \cdot A^{T} L$

$$
\left[\begin{array}{l}
A \\
B \\
C
\end{array}\right]=\left[\begin{array}{ccc}
\frac{8}{21} & \frac{3}{21} & \frac{1}{21} \\
\frac{3}{21} & \frac{9}{21} & \frac{3}{21} \\
\frac{1}{21} & \frac{3}{21} & \frac{8}{21}
\end{array}\right] \quad \times\left[\begin{array}{c}
37.803 \\
4.779 \\
31.157
\end{array}\right]=\left[\begin{array}{l}
16.568 \\
11.900 \\
14.352
\end{array}\right]
$$

$A=16.568 \mathrm{~m}$
$B=11.900 \mathrm{~m}$
$C=14.352 \mathrm{~m}$

## Example 6:

Calculate angle BAC, CAD and DAE using Least Square Adjustment observation equation method.

| Position | Angle |
| :---: | :---: |
| BAC | $30^{\circ} 38^{\prime} 56^{\prime \prime}$ |
| CAD | $54^{\circ} 25^{\prime} 20^{\prime \prime}$ |
| DAE | $25^{\circ} 18^{\prime} 40^{\prime \prime}$ |
| BAD | $85^{\circ} 04^{\prime} 24^{\prime \prime}$ |
| CAE | $79^{\circ} 43^{\prime} 55^{\prime \prime}$ |
| BAE | $110^{\circ} 22^{\prime} 50 "$ |



Step 1: Model the observation equation
$B A C=30^{\circ} 38^{\prime} 56^{\prime \prime}+V_{1}$
$C A D=54^{\circ} 25^{\prime \prime} 20^{\prime \prime}+V_{2}$
$D A E=25^{\circ} 18^{\prime} 40^{\prime \prime}+V_{3}$
$B A C+\mathrm{CAD}=85^{\circ} 04^{\prime} 24^{\prime \prime}+V_{4}$
$C A D+D A E=79^{\circ} 4355^{\prime \prime}+V_{5}$
$B A C+\mathrm{CAD}+\mathrm{DAE}=110^{\circ} 22^{\prime} 50^{\prime \prime}+V_{6}$

STEP 2: Create matrix $A, X$ and $L$

$$
\mathrm{A}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] ; \mathrm{X}=\left[\begin{array}{l}
B A C \\
C A D \\
D A E
\end{array}\right] ; \mathrm{L}=\left[\begin{array}{c}
30^{\circ} 38^{\prime} 56^{\prime \prime} \\
54^{\circ} 25^{\prime} \\
20^{\prime \prime} \\
25^{\circ} 18^{\prime} 40^{\prime \prime} \\
85^{\circ} 04^{\prime} 24^{\prime \prime} \\
79^{\circ} 43^{\prime} 55^{\prime \prime} \\
110^{\circ} 22^{\prime} 50^{\prime \prime}
\end{array}\right]
$$

STEP 3: Find metric $\boldsymbol{A}^{T} \boldsymbol{A}$

$$
A^{T} A=\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right] \cdot\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
3 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 3
\end{array}\right]
$$

## STEP 4: Find Determinant for matrix ( $\mathrm{A}^{\mathrm{T}} \mathrm{A}$ )

$$
\operatorname{Det} A^{T} A=\left[\begin{array}{lll}
3 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 3
\end{array}\right]=3\left[\begin{array}{ll}
4 & 2 \\
2 & 3
\end{array}\right]-2\left[\begin{array}{ll}
2 & 2 \\
1 & 3
\end{array}\right]+1\left[\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right]=16
$$

STEP 5: Minor matrix for $\left(A^{T} A\right)$

$$
A^{T} A=\left[\begin{array}{ll}
{\left[\begin{array}{ll}
4 & 2 \\
2 & 3
\end{array}\right]} & {\left[\begin{array}{ll}
2 & 2 \\
1 & 3
\end{array}\right]}
\end{array}\left[\begin{array}{ll}
2 & 4 \\
2 & 1 \\
2 & 3
\end{array}\right]\left[\begin{array}{lll}
3 & 1 \\
1 & 3
\end{array}\right]\left[\begin{array}{ll}
3 & 2 \\
1 & 2
\end{array}\right]=\left[\begin{array}{lll}
8 & 4 & 0 \\
4 & 8 & 4 \\
0 & 4 & 8
\end{array}\right]\right.
$$

## STEP 6: Adjoint matrix $A^{T} A$

$\operatorname{Adj}\left(A^{T} A\right)=\left(\operatorname{cof} A^{T} A\right)^{T}$
$\operatorname{cofactor}\left(A^{T} A\right)=\operatorname{minor}\left(A^{T} A\right)\left[\begin{array}{lll}+ & - & + \\ - & + & - \\ + & - & +\end{array}\right]$

$$
\operatorname{Cof}\left(A^{T} A\right)=\left[\begin{array}{ccc}
8 & -4 & 0 \\
-4 & 8 & -4 \\
0 & -4 & 8
\end{array}\right] \quad \operatorname{Adj}\left(A^{T} A\right)=\left[\begin{array}{ccc}
8 & -4 & 0 \\
-4 & 8 & -4 \\
0 & -4 & 8
\end{array}\right]
$$

## STEP 7: Inverse matrix ( $A^{T} A$ )

$$
\begin{aligned}
\left(A^{T} A\right)^{-1} & =\frac{1}{\operatorname{det}\left(A^{T} A\right)}\left(\operatorname{adj}\left(A^{T} A\right)\right) \\
& =\frac{1}{16} \times\left[\begin{array}{ccc}
8 & -4 & 0 \\
-4 & 8 & -4 \\
0 & -4 & 8
\end{array}\right]=\left[\begin{array}{ccc}
0.5 & -0.25 & 0 \\
-0.25 & 0.5 & -0.25 \\
0 & -0.25 & 0.5
\end{array}\right]
\end{aligned}
$$

## STEP 8: Find matrix $\left(A^{T} L\right)$

$$
A^{T} L=\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
30^{\circ} 38^{\prime} 56^{\prime \prime} \\
54^{\circ} 25^{\prime} 20^{\prime \prime} \\
25^{\circ} 18^{\prime} 40^{\prime \prime} \\
85^{\circ} 04^{\prime} 24^{\prime \prime} \\
79^{\circ} 43^{\prime} 55^{\prime \prime} \\
110^{\circ} 22^{\prime} 50^{\prime \prime}
\end{array}\right]=\left[\begin{array}{l}
226^{\circ} 06^{\prime} 10^{\prime \prime} \\
329^{\circ} 36^{\prime} 29^{\prime \prime} \\
215^{\circ} 25^{\prime} 25^{\prime \prime}
\end{array}\right]
$$

STEP 9: Solve $x=\left(A^{T} A\right)^{-1} \cdot A^{T} L$
$x=\left(A^{T} A\right)^{-1} \cdot A^{T} L$

$$
\left[\begin{array}{l}
B A C \\
C A D \\
D A E
\end{array}\right]=\left[\begin{array}{ccc}
0.5 & -0.25 & 0 \\
-0.25 & 0.5 & -0.25 \\
0 & -0.25 & 0.5
\end{array}\right] \times\left[\begin{array}{ll}
226^{\circ} 06^{\prime} 10^{\prime \prime} \\
329^{\circ} 36^{\prime} 29^{\prime \prime} \\
215^{\circ} 25^{\prime} 25^{\prime \prime}
\end{array}\right]=\left[\begin{array}{lll}
30^{\circ} 38^{\prime} 57.75^{\prime \prime} \\
54^{\circ} 25^{\prime} 20.75^{\prime \prime} \\
25^{\circ} 18^{\prime} 35.255^{\prime \prime}
\end{array}\right]
$$

$B A C=30^{\circ} 38^{\prime} 57.75^{\prime \prime}$
CAD $=54^{\circ} 25^{\prime} 20.75{ }^{\prime \prime}$
DAE $=25^{\circ} 18^{\prime} 35.25^{\prime \prime}$

## Example7: Condition adjustment

The three observations are related to their adjusted values and their residuals. Calculate adjusted angle for A and B using Least Square Adjustment observation equation method.

| Point | Angle |
| :---: | :---: |
| A | $150^{\circ} 20^{\prime} 30^{\prime \prime}$ |
| B | $80^{\circ} 17^{\prime} 35^{\prime \prime}$ |
| C | $129^{\circ} 21^{\prime} 30^{\prime \prime}$ |



## Step 1: Model the observation equation

$A=150^{\circ} 20^{\prime} 30^{\prime \prime}+V_{1}$
$B=80^{\circ} 1735^{\prime \prime}+V_{2}$
$C=129^{\circ} 21^{\prime} 30^{\prime \prime}+V_{3}$

## Condition equation

$A+\mathrm{B}+\mathrm{C}=360^{\circ} 00^{\prime} 00^{\prime \prime}$
$\mathrm{C}=360^{\circ} 00^{\circ} 00^{\prime \prime}-A-B$

## Substitute to $1^{\text {st }}$ equation

$360^{\circ} 00^{\prime} \mathbf{0 0}{ }^{\prime \prime}-\boldsymbol{A}-\boldsymbol{B}=129^{\circ} 21^{\prime} 30^{\prime \prime}+V_{3}$
$A+B=360^{\circ}-129^{\circ} 21^{\prime} 30^{\prime \prime}+V_{3}$
$A+B=230^{\circ} 38^{\prime} 30^{\prime \prime}+V_{3}$

## NEW EQUATION

$A=150^{\circ} 20^{\prime} 30^{\prime \prime}+V_{1}$
$B=80^{\circ} 17^{\prime} 35^{\prime \prime}+V_{2}$
$A+B=230^{\circ} 38^{\prime} 30^{\prime \prime}+V_{3}$

STEP 2: Create matrix $A, X$ and $L$

$$
\mathrm{A}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right] ; \mathrm{X}=\left[\begin{array}{l}
A \\
B
\end{array}\right] ; \mathrm{L}=\left[\begin{array}{c}
150^{\circ} 20^{\prime} 30^{\prime \prime} \\
80^{\circ} 17^{\prime} 35^{\prime \prime} \\
230^{\circ} 38^{\prime} 30^{\prime \prime}
\end{array}\right]
$$

STEP 3: Find metric $A^{T} A$

$$
A^{T} A=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

## STEP 4: Find Determinant for matrix ( $\mathrm{A}^{\mathrm{T}} \mathrm{A}$ )

$$
\operatorname{Det} A^{T} A=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]=(2 \times 2)-(1 \times 1)=3
$$

STEP 5: Minor matrix r for $\left(A^{T} A\right)$

$$
\operatorname{Cof} A^{T} A=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

STEP 6: Adjoint matrix $\boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{A}$
$\operatorname{Adj}\left(A^{T} A\right)=\left(\operatorname{cof} A^{T} A\right)^{T}$
$\operatorname{cofactor}\left(A^{T} A\right)=\operatorname{minor}\left(A^{T} A\right)\left[\begin{array}{lll}+ & - & + \\ - & + & - \\ + & - & +\end{array}\right]$

$$
\operatorname{cof}\left(A^{T} A\right)=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right] \quad \square \operatorname{Adj}\left(A^{T} A\right)=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]
$$

## STEP 7: Inverse matrix ( $A^{T} A$ )

$$
\begin{aligned}
\left(A^{T} A\right)^{-1} & =\frac{1}{\operatorname{det}\left(A^{T} A\right)}\left(\operatorname{adj}\left(A^{T} A\right)\right) \\
& =\frac{1}{3} \times\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{cc}
\frac{2}{3} & \frac{-1}{3} \\
\frac{-1}{3} & \frac{2}{3}
\end{array}\right]
\end{aligned}
$$

STEP 8: Find matrix ( $A^{T} L$ )

$$
A^{T} L=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
150^{\circ} 20^{\prime} 30^{\prime \prime} \\
80^{\circ} 17^{\prime} 35^{\prime \prime} \\
230^{\circ} 38^{\prime} 30^{\prime \prime}
\end{array}\right]=\left[\begin{array}{l}
380^{\circ} 59^{\prime} 00^{\prime \prime} \\
310^{\circ} 56^{\prime} 05^{\prime \prime}
\end{array}\right]
$$

STEP 9: Solve $x=\left(A^{T} A\right)^{-1} \cdot A^{T} L$
$x=\left(A^{T} A\right)^{-1} \cdot A^{T} L$

$$
\left[\begin{array}{c}
A \\
B
\end{array}\right]=\left[\begin{array}{cc}
\frac{2}{3} & \frac{-1}{3} \\
\frac{-1}{3} & \frac{2}{3}
\end{array}\right] \times\left[\begin{array}{ll}
380^{\circ} 59^{\prime} 00^{\prime \prime} \\
310^{\circ} 56^{\prime} 05^{\prime \prime}
\end{array}\right]=\left[\begin{array}{c}
150^{\circ} 20^{\prime} 38.33^{\prime \prime} \\
80^{\circ} 17^{\prime} 43.33^{\prime \prime}
\end{array}\right]
$$

$$
\begin{aligned}
A & =150^{\circ} 20^{\prime} 38.33^{\prime \prime} \\
B & =80^{\circ} 17^{\prime} 43.33^{\prime \prime} \\
C & =360^{\circ}-\left(150^{\circ} 20^{\prime} 38.33^{\prime \prime}+80^{\circ} 17^{\prime} 43.33^{\prime \prime}\right) \\
& =129^{\circ} 21^{\prime} 38.34^{\prime \prime}
\end{aligned}
$$

## SOLVE LEAST SQUARE ADJUSTMENT WITH WEIGHTS

## Step by step to solve LSA problem with weights

10. Model the observation equation
11. Create matrix $A, X, W$ and $L$
12. Find matrix $A^{T} W A$
13. Find Determinant for $A^{T} W A$
14. Find minor matrix for $A^{T} W A$
15. Adjoint matrix $A^{T} W A$
16. Inverse matrix $A^{T} W A$
17. Find $A^{T} W L$
18. Solve $x=\left(A^{T} W A\right)^{-1} \cdot A^{T} W L$

## Example 1

Calculate the variables for the elevations of $A, B$ and $C$. Use the least square adjustment method. Given the elevation of $B M 1$ is 15.384 m and $B M 2=16.245 \mathrm{~m}$

| From | To | Different Height | Weights |
| :---: | :---: | :---: | :---: |
| A | BM1 | -5.663 | 2 |
| BM 1 | C | -2.929 | 2 |
| C | B | 5.174 | 2 |
| C | BM2 | 3.790 | 4 |
| BM2 | B | 1.378 | 1 |
| BM2 | A | 4.802 | 2 |
| B | A | 3.420 | 4 |

## Step 1: Model the observation equation

$B M 1-A=-5.663+V_{1}$
$C-B M 1=-2.929+V_{2}$
$B-C=5.174+V_{3}$
$B M 2-C=3.790+V_{4}$

## NOTE :

Different height $=$ fore sight - back sight

- Insert know value into the equation
$B-B M 2=1.378+V_{5}$
$A-B M 2=4.802+V_{6}$
$A-B=3.420+V_{7}$

New equation after insert know value
$15.384-A=-5.663+V_{1}$
$C-15.384=-2.929+V_{2}$
$B-C=5.174+V_{3}$
16.245-C $=3.790+V_{4}$
$B-16.245=1.378+V_{5}$
$A-16.245=4.802+V_{6}$
$A-B=3.420+V_{7}$

$$
\begin{aligned}
& A=21.047+V_{1} \\
& C=12.455+V_{2} \\
& B-C=5.174+V_{3} \\
& C=12.455+V_{4} \\
& B=17.623+V_{5} \\
& A=21.047+V_{6} \\
& A-B=3.420+V_{7}
\end{aligned}
$$

STEP 2: Create matrix $A, X, W$ and $L$

$$
\begin{aligned}
& \mathrm{A}= {\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & -1 & 0
\end{array}\right] \quad \mathrm{X}=\left[\begin{array}{c}
A \\
B \\
C
\end{array}\right] \quad \mathrm{L}=\left[\begin{array}{c}
21.047 \\
12.455 \\
5.174 \\
12.455 \\
17.623 \\
21.047 \\
3.420
\end{array}\right] \quad W=\left[\begin{array}{lllllll}
2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 4
\end{array}\right] } \\
& \text { Base on weighted data }
\end{aligned}
$$

## STEP 3: Find metric $A^{T} W \boldsymbol{A}$

$$
\begin{aligned}
& \left.A^{T} A=\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & -1 \\
0 & 1 & -1 & 1 & 0 & 0 & 0
\end{array}\right] \times\left[\begin{array}{lllllll}
2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 4
\end{array}\right]\right] \times\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & -1 & 0
\end{array}\right] \\
& A^{T} A=\left[\begin{array}{ccccccc}
2 & 0 & 0 & 0 & 0 & 2 & 4 \\
0 & 0 & 2 & 0 & 1 & 0 & -4 \\
0 & 2 & -2 & 4 & 0 & 0 & 0
\end{array}\right] \times\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & -1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
8 & -4 & 0 \\
-4 & 7 & -2 \\
0 & -2 & 8
\end{array}\right]
\end{aligned}
$$

## STEP 4: Find Determinant for matrix ( $\mathrm{A}^{\mathrm{T}} \mathrm{W} \mathbf{A}$ )

$$
\operatorname{Det} A^{T} A=\left[\begin{array}{ccc}
8 & -4 & 0 \\
-4 & 7 & -2 \\
0 & -2 & 8
\end{array}\right]=8\left[\begin{array}{cc}
7 & -2 \\
-2 & 8
\end{array}\right]-(-4)\left[\begin{array}{cc}
-4 & -2 \\
0 & 8
\end{array}\right]+0\left[\begin{array}{cc}
-4 & 7 \\
0 & -2
\end{array}\right]=288
$$

## STEP 5: Minor matrix for ( $A^{T} W A$ )

$$
\text { Minor } A^{T} A=\left[\begin{array}{ccc}
{\left[\begin{array}{cc}
7 & -2 \\
-2 & 8
\end{array}\right]} & {\left[\begin{array}{cc}
-4 & -2 \\
0 & 8
\end{array}\right]} & {\left[\begin{array}{cc}
-4 & 7 \\
0 & -2
\end{array}\right]} \\
{\left[\begin{array}{cc}
-4 & 0 \\
-2 & 8
\end{array}\right]} & \left.\begin{array}{cc}
8 & 0 \\
0 & 8
\end{array}\right] & {\left[\begin{array}{cc}
8 & -4 \\
0 & -2
\end{array}\right]} \\
{\left[\begin{array}{cc}
-4 & 0 \\
7 & -2
\end{array}\right]} & {\left[\begin{array}{cc}
8 & 0 \\
-4 & -2
\end{array}\right]} & {\left[\begin{array}{cc}
8 & -4 \\
-4 & 7
\end{array}\right]}
\end{array}\right]=\left[\begin{array}{ccc}
52 & -32 & 8 \\
-32 & 64 & -16 \\
8 & -16 & 40
\end{array}\right]
$$

## STEP 6: Adjoint matrix $\boldsymbol{A}^{T} \boldsymbol{W} \boldsymbol{A}$

$\operatorname{cofactor}\left(A^{T} W A\right)=\left[\begin{array}{ccc}52 & 32 & 8 \\ 32 & 64 & 16 \\ 8 & 16 & 40\end{array}\right] \quad \square \operatorname{Adj}\left(A^{T} W A\right)=\left[\begin{array}{ccc}52 & 32 & 8 \\ 32 & 64 & 16 \\ 8 & 16 & 40\end{array}\right]$

## STEP 7: Inverse matrix ( $\boldsymbol{A}^{T} W \boldsymbol{A}$ )

$$
\begin{aligned}
\left(A^{T} W A\right)^{-1} & =\frac{1}{\operatorname{det}\left(A^{T} W A\right)}\left(\operatorname{cof} \operatorname{adj}\left(A^{T} W A\right)\right) \\
& =\frac{1}{288} \times\left[\begin{array}{ccc}
52 & 32 & 8 \\
32 & 64 & 16 \\
8 & 16 & 40
\end{array}\right]=\left[\begin{array}{ccc}
\frac{13}{72} & \frac{1}{9} & \frac{1}{36} \\
\frac{1}{9} & \frac{2}{9} & \frac{1}{18} \\
\frac{1}{36} & \frac{1}{18} & \frac{5}{36}
\end{array}\right]
\end{aligned}
$$

## STEP 8: Find matrix ( $A^{T} W L$ )

$$
\begin{aligned}
& A^{T} W L=\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & -1 \\
0 & 1 & -1 & 1 & 0 & 0 & 0
\end{array}\right] \times\left[\begin{array}{lllllll}
2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 4
\end{array}\right] \times\left[\begin{array}{c}
21.047 \\
12.455 \\
5.174 \\
12.455 \\
17.623 \\
21.047 \\
3.420
\end{array}\right] \\
& A^{T} W A=\left[\begin{array}{ccccccc}
2 & 0 & 0 & 0 & 0 & 2 & 4 \\
0 & 0 & 2 & 0 & 1 & 0 & -4 \\
0 & 2 & -2 & 4 & 0 & 0 & 0
\end{array}\right] \times\left[\begin{array}{c}
21.047 \\
12.455 \\
5.174 \\
12.455 \\
17.623 \\
21.047 \\
3.420
\end{array}\right]=\left[\begin{array}{l}
97.868 \\
14.291 \\
64.382
\end{array}\right]
\end{aligned}
$$

STEP 9: Solve $x=\left(A^{T} W A\right)^{-1} . A^{T} W L$

$$
\left[\begin{array}{l}
A \\
B \\
C
\end{array}\right]=\left[\begin{array}{ccc}
\frac{13}{72} & \frac{1}{9} & \frac{1}{36} \\
\frac{1}{9} & \frac{2}{9} & \frac{1}{18} \\
\frac{1}{36} & \frac{1}{18} & \frac{5}{36}
\end{array}\right] \times\left[\begin{array}{l}
97.868 \\
14.291 \\
64.382
\end{array}\right]=\left[\begin{array}{l}
21.103 \\
17.641 \\
12.490
\end{array}\right]
$$

$A=21.103 \mathrm{~m}$
$B=17.641 \mathrm{~m}$
$C=12.490 \mathrm{~m}$

## Example 2:

Calculate angle BAC, CAD and DAF using Least Square Adjustment observation equation method.

| Position | Angle | Std. dev |
| :---: | :---: | :---: |
| BAC | $45^{\circ} 38^{\prime} 56^{\prime \prime}$ | $5^{\prime \prime}$ |
| CAD | $48^{\circ} 25^{\prime} 200^{\prime \prime}$ | $2^{\prime \prime}$ |
| DAF | $85^{\circ} 55^{\prime} 45^{\prime \prime}$ | $2^{\prime \prime}$ |
| BAD | $94^{\circ} 04^{\prime} 20$ | $5^{\prime \prime}$ |
| CAF | $134^{\circ} 21^{\prime} 05^{\prime \prime}$ | $10^{\prime \prime}$ |

## Step 1: Model the observation equation


$B A C=45^{\circ} 38^{\prime} 56^{\prime \prime}+V_{1}$
$C A D=48^{\circ} 25^{\prime} 20^{\prime \prime}+V_{2}$
$D A F=85^{\circ} 55^{\prime \prime} 45^{\prime \prime}+V_{3}$
$B A C+C A D=94^{\circ} 0420^{\prime \prime}+V_{4}$
$\mathrm{CAD}+\mathrm{DAF}=134^{\circ} 21^{\prime} 05^{\prime \prime}+V_{5}$

## Condition equation

$\mathrm{BAC}+\mathrm{CAD}+\mathrm{DAF}=180^{\circ}$
$\mathrm{DAF}=180^{\circ}-(\mathrm{BAC}+\mathrm{CAD})$

## Substitute into observation equation

$$
\begin{aligned}
& B A C=45^{\circ} 38^{\prime} 56^{\prime \prime}+V_{1} \\
& C A D=48^{\circ} 25^{\prime} 20^{\prime \prime}+V_{2} \\
& 180^{\circ}-\mathbf{B A C}-\mathbf{C A D}=85^{\circ} 55^{\prime} 45^{\prime \prime}+V_{3} \\
& B A C+C A D=94^{\circ} 04^{\prime} 20^{\prime \prime}+V_{4} \\
& C A D+\left(180^{\circ}-\mathbf{B A C}-\mathbf{C A D}\right)=134^{\circ} 21^{\prime} 05^{\prime \prime}+V_{5}
\end{aligned}
$$

## New Equation

$B A C=45^{\circ} 3856^{\prime \prime}+V_{1}$
$C A D=48^{\circ} 2520^{\prime \prime}+V_{2}$
$\mathbf{B A C}+\mathbf{C A D}=94^{\circ} 0415^{\prime \prime}+V_{3}$
$B A C+C A D=94^{\circ} 0420^{\prime \prime}+V_{4}$
$\mathbf{B A C}=45^{\circ} 38^{\prime} 55^{\prime \prime}+V_{5}$

## STEP 2: Create matrix $A, X, W$ and $L$

$$
\mathrm{A}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 0
\end{array}\right] ; \mathrm{X}=\left[\begin{array}{l}
B A C \\
C A D
\end{array}\right] ; \quad \mathrm{L}=\left[\begin{array}{ccc}
45^{\circ} & 38^{\prime} & 56^{\prime \prime} \\
48^{\circ} & 25^{\prime} & 20 \\
94^{\circ} & 04^{\prime} & 15^{\prime \prime} \\
94^{\circ} & 04^{\prime} 20^{\prime \prime} \\
45^{\circ} & 38^{\prime} & 55^{\prime \prime}
\end{array}\right] \quad \mathrm{W}=\left[\begin{array}{ccccc}
\frac{1}{5^{2}} & 0 & 0 & 0 & 0 \\
0 & \frac{1}{2^{2}} & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2^{2}} & 0 & 0 \\
0 & 0 & 0 & \frac{1}{5^{2}} & 0 \\
0 & 0 & 0 & 0 & \frac{1}{10^{2}}
\end{array}\right]
$$

## STEP 3: Find metric $\boldsymbol{A}^{T} \mathbf{W} \boldsymbol{A}$

$$
\begin{aligned}
& A^{T} W A=\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right] \times\left[\begin{array}{ccccc}
\frac{1}{5^{2}} & 0 & 0 & 0 & 0 \\
0 & \frac{1}{2^{2}} & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2^{2}} & 0 & 0 \\
0 & 0 & 0 & \frac{1}{5^{2}} & 0 \\
0 & 0 & 0 & 0 & 10^{2}
\end{array}\right] \times\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 0
\end{array}\right] \\
& A^{T} W A=\left[\begin{array}{ccccc}
0.04 & 0 & 0.25 & 0.04 & 0.01 \\
0 & 0.25 & 0.25 & 0.04 & 0
\end{array}\right] \times\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{lll}
0.34 & 0.29 \\
0.29 & 0.54
\end{array}\right]
\end{aligned}
$$

## STEP 4: Find Determinant for matrix ( $\mathbf{A}^{\mathrm{T}} \mathbf{W} \mathbf{A}$ )

$$
\text { Det } A^{T} W A=\left[\begin{array}{ll}
0.34 & 0.29 \\
0.29 & 0.54
\end{array}\right]=0.0995
$$

STEP 5: Minor matrix r for ( $\left.A^{T} \mathbf{W} A\right)$

$$
\text { minor } A^{T} W A=\left[\begin{array}{ll}
0.54 & 0.29 \\
0.29 & 0.34
\end{array}\right]
$$

## STEP 6: Adjoint matrix $A^{T} \mathbf{W} A$

$\operatorname{Adj}\left(A^{T} W A\right)=\left(\operatorname{cof} A^{T} W A\right)^{T}$
$\operatorname{cofactor}\left(A^{T} W A\right)=\operatorname{minor}\left(A^{T} W A\right)\left[\begin{array}{lll}+ & - & + \\ - & + & - \\ + & - & +\end{array}\right]$

$$
\operatorname{cof}\left(A^{T} W A\right)=\left[\begin{array}{ll}
0.54 & 0.29 \\
0.29 & 0.34
\end{array}\right] \quad \square \quad \operatorname{Adj}\left(A^{T} W A\right)=\left[\begin{array}{cc}
0.54 & -0.29 \\
-0.29 & 0.34
\end{array}\right]
$$

## STEP 7: Inverse matrix ( $A^{T} W A$ )

$$
\begin{aligned}
\left(A^{T} W A\right)^{-1} & =\frac{1}{\operatorname{det}\left(A^{T} W A\right)}\left(\operatorname{adj}\left(A^{T} W A\right)\right) \\
& =\frac{1}{0.0995} \times\left[\begin{array}{cc}
0.54 & -0.29 \\
-0.29 & 0.34
\end{array}\right]=\left[\begin{array}{cc}
\frac{1080}{199} & \frac{-580}{199} \\
\frac{-580}{199} & \frac{680}{199}
\end{array}\right]
\end{aligned}
$$

## STEP 8: Find matrix ( $A^{T} W L$ )

$$
\begin{aligned}
A^{T} W L & =\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right] \cdot\left[\begin{array}{ccccc}
\frac{1}{5^{2}} & 0 & 0 & 0 & 0 \\
0 & \frac{1}{2^{2}} & 0 & 0 & 0 \\
2^{2} & 0 & 0 \\
0 & 0 & \frac{1}{2^{2}} & 0 \\
0 & 0 & 0 & 5^{2} & \frac{1}{10} \\
0 & 0 & 0 & 0 & 10^{2}
\end{array}\right] \cdot\left[\begin{array}{c}
45^{\circ} 38^{\prime} 56^{\prime \prime} \\
48^{\circ} 25^{\prime} 20^{\prime \prime} \\
94^{\circ} 04^{\prime} 15^{\prime \prime} \\
94^{\circ} 04^{\prime} 20^{\prime \prime} \\
45^{\circ} 38^{\prime} 55^{\prime \prime}
\end{array}\right] \\
& =\left[\begin{array}{ccccc}
0.04 & 0 & 0.25 & 0.04 & 0.01 \\
0 & 0.25 & 0.25 & 0.04 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
45^{\circ} 38^{\prime} 56^{\prime \prime} \\
48^{\circ} 25^{\prime} 20^{\prime \prime} \\
94^{\circ} 04^{\prime} 15^{\prime \prime} \\
94^{\circ} 04^{\prime} 20^{\prime \prime} \\
45^{\circ} 38^{\prime} 55^{\prime \prime}
\end{array}\right]=\left[\begin{array}{l}
29^{\circ} 33^{\prime} 47 " 7 \\
39^{\circ} 23^{\prime} 10^{\prime \prime}
\end{array}\right]
\end{aligned}
$$

STEP 9: Solve $x=\left(A^{T} W A\right)^{-1} \cdot A^{T} W L$
$x=\left(A^{T} W A\right)^{-1} \cdot A^{T} W L$

$$
\left[\begin{array}{c}
B A C \\
C A D
\end{array}\right]=\left[\begin{array}{cc}
\frac{1080}{199} & \frac{-580}{199} \\
\frac{-580}{199} & \frac{680}{199}
\end{array}\right] \times\left[\begin{array}{l}
29^{\circ} 33^{\prime} 47^{\prime \prime} \\
39^{\circ} 23^{\prime} 10^{\prime \prime}
\end{array}\right]=\left[\begin{array}{c}
45^{\circ} 38^{\prime} 58.48^{\prime \prime} \\
48^{\circ} 25^{\prime} 19.3^{\prime \prime}
\end{array}\right]
$$

$$
\begin{aligned}
\mathrm{BAC} & =45^{\circ} 38^{\prime} 58.48^{\prime \prime} \\
\mathrm{CAD} & =48^{\circ} 25^{\prime} 19.3^{\prime \prime} \\
\mathrm{DAF} & =180^{\circ}-\left(45^{\circ} 38^{\prime} 58.48^{\prime \prime}+48^{\circ} 25^{\prime} 19.3^{\prime \prime}\right) \\
& =85^{\circ} 55^{\prime} 42.22^{\prime \prime}
\end{aligned}
$$

# "You don't have to be great to start, but you have to start to be great" 

## -Zig Ziglar-

## Tutorial

## Question 1

Calculate the adjustment length AD and its estimated error given Figure 3 and the observation data below

| line | Distance, m |
| :---: | :---: |
| $\mathbf{A B}$ | 3.17 |
| $\mathbf{B C}$ | 1.12 |
| $\mathbf{C D}$ | 2.25 |
| $\mathbf{A C}$ | 4.31 |
| $\mathbf{A D}$ | 6.51 |
| $\mathbf{B D}$ | 3.36 |

## Question 2

The use of least square adjustment principle is to solve the redundant equations. From the equations below:

$$
\begin{gathered}
2 x+y=21+V_{1} \\
24 x-6 y=11+V_{2} \\
4 x-2 y=20+V_{3}
\end{gathered}
$$

i. State the number of variables and observation
ii. Calculate the variable by using the principles of least square adjustment.

## Question 3

Using the conditional equation method, what are the most probable values for the three interior angles of a triangle that were measured as.

| station | angle | Std. dev |
| :---: | :---: | :---: |
| A | $58^{\circ} 14^{\prime} 56^{\prime \prime}$ | $5.2^{\prime \prime}$ |
| B | $65^{\circ} 03^{\prime} 34^{\prime \prime}$ | $5.2^{\prime \prime}$ |
| C | $56^{\circ} 40^{\prime} 20^{\prime \prime}$ | $5.2^{\prime \prime}$ |

## Question 4

Calculate the variables for the elevations of B, C and D. Use the least square adjustment method. Given the elevation of BM 1 is 40.213 m

| From | To | elevation | Std. dev |
| :---: | :---: | :---: | :---: |
| A | B | 10.509 | 0.006 |
| B | C | 5.360 | 0.004 |
| C | D | -8.523 | 0.005 |
| D | A | -7.348 | 0.003 |
| B | D | -3.167 | 0.004 |
| A | C | 15.881 | 0.012 |

## Reference

Abdul Wahid Idris dan Halim Setan. (2001). Pelarasan Ukur. Kuala Lumpur: Percetakan Dewan Bahasa Dan Pustaka.

Azman Mohd Suldi dan Kamaluddin Hj Talib. (1994). Monograf: Penghitungan penyelarasan. Shah Alam: UiTM.
D.Ghilani, c. (2010). Adjustment Computations: Spatial Data Analysis fifth Edition. New Jersy: John Wiley \& Sons, INC.

Khalid, H. F. (2003). Nota Program KPSL JUPEM. Ipoh: PUO.

Mikhail, Edward M. (1981). Analysis and Adjustment of Survey Measurements. Van Nostrand Reinhold

SURVEY ADJUSTMENT provides the students with knowledge on adjustment. The book emphasizes the calculation of adjustment using the least square adjustment method through observation and condition equations in solving surveyed data. Besides, it is also provides students with knowledge and practical skills to calculate and adjust surveyed data.

## 66 <br> True value of measurement is unknown <br> Actual size of error is unknown Errors exist in measurement data \& computed results $5>$

e ISBN 978-967-2241-83-6

