
ZAIN RETAS

ZAIN RETAS

EXPLORING
EMBEDDED SYSTEMS

Hands-on with
Arduino & Augmented Reality

First Edition 2025
© Politeknik Merlimau Melaka, 2025

All right reserved. No part of this publication may be reproduced, distributed, or transmitted
in any form or by any means, including photocopying, recording, or other electronic or

mecahnic method, without the prior written permission of the writer , except in the case of
brief quatations embodied in reviews and specific other noncommercial uses.

ZAIN RETAS

Publish by:
Politeknik Merlimau Melaka

KM 15, Jalan Jasin
77300 Merlimau Melaka

Tel : 06-2636687
Fax: 06-2636678

Website: www.pmm.mypolycc.edu.my

EDITORIAL BOARD

Chief Editor

MUHAMAD ALIF AL BAKRI ABDULLAH

Editor

GADAFFI BIN OMAR

Designer

NURUL AQILAH BINTI JOHAR

Proofreading & Language Editing

ACKNOWLEDGEMENT

This eBook, "EMBEDDED SYSTEMS: Hands-on with Arduino & Augmented Reality", was
made possible through the dedication, support, and collaboration of many individuals

and organizations.

First and foremost, I would like to express my sincere gratitude to the Jabatan Kejuruteraan
Mekanikal, Politeknik Merlimau Melaka for their unwavering encouragement and for
fostering a supportive teaching and learning environment. Special appreciation goes to
my studentsyour enthusiasm, feedback, and active participation in the flipped classroom
sessions were the driving force behind the development of this eBook.

I would also like to extend my appreciation to Bahagian Instruksional dan Pembangunan
Digital (BIPD) and Digital Learning Centre for providing the platform, tools, and support
that enabled the transformation of conventional teaching into a more engaging, student
centered learning experience.

A heartfelt thank you to my colleagues, mentors, and peer reviewers whose valuable
insights and suggestions helped enhance the quality and relevance of this work.

Lastly, to all learners embarking on your embedded systems journeymay this eBook
empower and inspire you to explore, create, and innovate with curiosity and confidence.

PREFACE

This eBook, "EMBEDDED SYSTEMS: Hands-on with Arduino & Augmented Reality", is
made to help students and beginners learn about embedded systems in a fun and

practical way.

Today, smart machines and automation are part of our daily lives. Learning how these
systems work is important. In this eBook, you will learn step by step how to build simple
projects using Arduino and even use augmented reality (AR) to make your learning more
exciting.

This book follows the flipped classroom method, where you learn by doing. It starts with
easy projects like blinking an LED, then moves to more advanced systems like automation
and IoT. With hands-on activities and clear explanations, you will gain the skills needed to
create your own smart solutions.

This eBook was created as part of the ANUGERAH REKABENTUK INSTRUKSIONAL
FLEKSIBEL (ARIF) project to support active learning. Whether you are new to embedded
systems or looking to improve your skills, we hope this book will guide you, inspire you, and
help you enjoy the learning process.

Let’s start small, think big, and have fun creating!

Why should you care?

PIC vs Arduino: Which one should you choose?

Hands-on Activity with AR: Install Arduino IDE and
make your first LED blink!

Step-by-Step Instructions

What You Will Learn

What You Need

Why This is Useful

10Step-by-Step Guide

Challenge

Pin Configuration

How Does a 7-Segment Display Work?

Types of 7-Segment Displays

Limitations of 7-Segment Displays

Example Code for Arduino

TABLE OF CONTENTS

Introduction

03

01

04

05

How to Add the Arduino Library

to Proteus 8 06

02

07

08

Arduino LED Blink 09
03

11

7-Segment Display & LCD

Display 12

04

13

14

15

16

17

Key Takeaways

How to Use a 7-Segment Display

Example: Displaying Numbers

Applications of 7-Segment Displays

Advantages of 7-Segment Displays

Summary

Challenge

Why This eBook is Different

How to Use This eBook

Motivational Tip

Why should you care? .. 01
How to Use This eBook .. 01

Starting up

Why learn embedded system	 ..02
PIC vs Arduino	03
Why Arduino Uno is More Popular...03
When ESP (ESP8266/ ESP32) is Better..03
Summary..03

Lesson 1 : Introduction to Embedded System & Arduino Installation

Think Big, Start Small, Have Fun: Your Journey into
 Embedded Systems Journey

Lesson 2 : Install Arduino IDE

What You Will Learn ..05
What You Need ...05
Step by step Instructions ...06
Key Takeaways ..07
Why This is Useful ...07

Why should you care?

PIC vs Arduino: Which one should you choose?

Hands-on Activity with AR: Install Arduino IDE and
make your first LED blink!

Step-by-Step Instructions

What You Will Learn

What You Need

Why This is Useful

10Step-by-Step Guide

Challenge

Pin Configuration

How Does a 7-Segment Display Work?

Types of 7-Segment Displays

Limitations of 7-Segment Displays

Example Code for Arduino

TABLE OF CONTENTS

Introduction

03

01

04

05

How to Add the Arduino Library

to Proteus 8 06

02

07

08

Arduino LED Blink 09
03

11

7-Segment Display & LCD

Display 12

04

13

14

15

16

17

Key Takeaways

How to Use a 7-Segment Display

Example: Displaying Numbers

Applications of 7-Segment Displays

Advantages of 7-Segment Displays

Summary

Challenge

Why This eBook is Different

How to Use This eBook

Motivational Tip

Hands-on Activity with AR: Install Arduino IDE and make your first
LED blink! ...09
 Challenge ..09
LED Blink with Diffferent Intervals...10
LED Blink with Button Control ..11
LED Blink with PWM (Pulse Width Nodulation) ...12
LED Blink with Random Intervals ..13
LED Blink with Serial Monitor Feedback...14
LED Blink with Variable Blink Speed via Potentiometer15
LED Blink with External Components (e.g, Transistor or MOSFET)16
Application of “LED Blink with Different Intervals17

Lesson 3 : Arduino LED Blink

Lesson 4 : 7 Segment Display

What you’ll learn ...21
Types of 7-Segment Displays... 22
Pin Configuration ... 23
How to Use a 7-Segment Display ...23
Example : Dosplaying Numbers ...23
Applications of 7-Segment Displays ...23
Limitations of 7-Segment Displays..24
Summary ...24
Challenge ..24

Why should you care?

PIC vs Arduino: Which one should you choose?

Hands-on Activity with AR: Install Arduino IDE and
make your first LED blink!

Step-by-Step Instructions

What You Will Learn

What You Need

Why This is Useful

10Step-by-Step Guide

Challenge

Pin Configuration

How Does a 7-Segment Display Work?

Types of 7-Segment Displays

Limitations of 7-Segment Displays

Example Code for Arduino

TABLE OF CONTENTS

Introduction

03

01

04

05

How to Add the Arduino Library

to Proteus 8 06

02

07

08

Arduino LED Blink 09
03

11

7-Segment Display & LCD

Display 12

04

13

14

15

16

17

Key Takeaways

How to Use a 7-Segment Display

Example: Displaying Numbers

Applications of 7-Segment Displays

Advantages of 7-Segment Displays

Summary

Challenge

Why This eBook is Different

How to Use This eBook

Motivational Tip

Lesson 5 : LCD Display

How Does an LCD Display Work?...25
Character LCD ..25
Graphical LCD...25
Pin Configuration of a Character LCD ...25
How to Use an LCD of Displays ...25
Example connecting a 16x2 LCD to an Arduino.................................27
Application of LCD Displays ...28
Advantages of LCD Displays..29
Limitation of LCD Displays ...29
Summary ... 29

Exercises

Table 1.1 : Comparison between PIC Microcontroller and Arduino	
in terms of programming complexity, hardware control, 		 	
and best use cases. ..3

List of Table

Review Questions ...30
Review Questions and Answers...31
References ...34
Appendices ..35

Why should you care?

PIC vs Arduino: Which one should you choose?

Hands-on Activity with AR: Install Arduino IDE and
make your first LED blink!

Step-by-Step Instructions

What You Will Learn

What You Need

Why This is Useful

10Step-by-Step Guide

Challenge

Pin Configuration

How Does a 7-Segment Display Work?

Types of 7-Segment Displays

Limitations of 7-Segment Displays

Example Code for Arduino

TABLE OF CONTENTS

Introduction

03

01

04

05

How to Add the Arduino Library

to Proteus 8 06

02

07

08

Arduino LED Blink 09
03

11

7-Segment Display & LCD

Display 12

04

13

14

15

16

17

Key Takeaways

How to Use a 7-Segment Display

Example: Displaying Numbers

Applications of 7-Segment Displays

Advantages of 7-Segment Displays

Summary

Challenge

Why This eBook is Different

How to Use This eBook

Motivational Tip

List of Figure

Figure 1.1 : How to Add Arduino Library in Proteus 8...................................5
Figure 3.1 : Augmented Reality (AR) Video: LED Blink with Arduino9
Figure 3.2 : How to Blink an LED with Arduino ..10
Figure 3.3 : Blinking Led using a button...11
Figure 3.4 : How Does PWM Work? ...12
Figure 3.5 :Three LED Blink at Random Intervals with Arduino13
Figure 3.6 : Turn On Led Using Serial Monitor ...14
Figure 3.7: Potentiometer controls LED Fade in and out and LED blink 	
		 speed ..15
Figure 3.8 : Simple led flasher using BC547 ..16
Figure 3.9 : Transistor controlled by Arduino (as amplifier)16
Figure 3.10 : Traffic/Pedestrian Signals ...17
Figure 3.11 : Interactive Art or Entertainment ..18
Figure 3.12 : Emergency or Alert Systems ..18
Figure 3.13 : Wearable Tech or Health Monitoring19
Figure 3.14 : Educational Tools ..19
Figure 3.15 : Automotive Lighting ..20
Figure 3.16 : 7 Segment Display ...22
Figure 3.17 : 7 Segment pin configurations ..22
Figure 3.18 : Augmented Reality (AR) Video, 7 Segment with Arduino22
Figure 3.19 : Segment pin configurations for the common cathode or 		
		 common anode ..23
Figure 3.20: Pin configuration of LCD ..26
Figure 3.21 : Augmented Reality (AR) Video LCD with Arduino27
Figure 3.22: Wiring Circuit: LCD with Arduino ..27
Figure 3.23 : LCD in consumer electronics.............................28
Figure 3.24 : Interfaces in control panels ..29
Figure 3.25 : Interfaces in control machinery displays29

Hands-on learning: You’ll build real projects that solve real problems. Forget boring
theory—this eBook is all about **building, experimenting, and innovating**

Fun and creativity: You’ll get to experiment, innovate, and turn your ideas into reality.
Imagine building your own smart home system, a robot, or even a drone. That’s what
embedded systems can do!

1. Read the chapters : Each week, focus on one chapter and complete the activities.
2. Watch the videos : Links to YouTube tutorials are provided for extra help.
3. Scan QR codes : Use your smartphone to view 3D models and circuits in AR.
4. Build projects: Apply what you’ve learned by building your own projects.

WHY SHOULD YOU CARE?

HOW TO USE THIS EBOOK

Career opportunities: These skills are in high demand in industries like robotics, IoT, and
automation. Companies are looking for people who can design and build smart systems.

WHY SHOULD YOU CARE?

Hands-on learning: You’ll build real projects that solve real problems. Forget boring

theory—this eBook is all about building, experimenting, and innovating

Career opportunities: These skills are in high demand in industries like robotics, IoT, and
automation. Companies are looking for people who can design and build smart systems.

Fun and creativity: You’ll get to experiment, innovate, and turn your ideas into reality.
Imagine building your own smart home system, a robot, or even a drone. That’s what
embedded systems can do!

How to Use This eBook

1.	 Read the chapters : Each week, focus on one chapter and complete the activities.

2.	 Watch the videos : Links to YouTube tutorials are provided for extra help.

3.	 Scan QR codes : Use your smartphone to view 3D models and circuits in AR.

4.	 Build projects: Apply what you’ve learned by building your own projects.

1

Lesson 1 – Introduction to Embedded Systems & Arduino
Installation
Imagine building your own smart home system, a robot, or even a drone. That’s what

embedded systems can do!

Why learn embedded systems?

Embedded systems are the backbone of modern technology. They’re used in everything
from smart home devices to medical equipment. By learning embedded systems, you’ll gain
the skills to create your own smart devices and solve real-world problems.

You’ll learn how to control lights, sensors, and motors using Arduino a beginner-friendly tool.

2

PIC vs Arduino: Which one should you choose?

PIC Microcontroller : Great for advanced projects, but harder to program. If you love coding
from scratch and want full control over hardware, PIC is for you.

Arduino: Perfect for beginners easy to use and quick to get results. Arduino has lots of pre-
built libraries, so you can focus on building your project instead of writing complex code.

Why Arduino Uno is More Popular
Simple to use: Easier for students to understand hardware and code structure.
Huge community: Tons of tutorials, examples, and support available.
Plenty of shields and modules: Compatible with sensors and displays used in common
student projects.
Robust I/O pins: Great for basic automation, motor control, LEDs, and LCDs.
No need for Wi-Fi setup: Ideal for offline, hardware-focused projects.

When ESP (ESP8266/ESP32) is Better

Needed if the project requires Wi-Fi/Bluetooth.
Ideal for IoT-based or cloud-connected applications.

Summary
Arduino Uno : best for learning fundamentals, basic control systems, offline interfacing.
ESP32/8266 : best when Wi-Fi, Bluetooth, or more processing power is needed.

3

Table 1.1 : Comparison between PIC Microcontroller and Arduino in terms of programming
complexity, hardware control, and best use cases.

What if your room could clean itself, or your
plants could water themselves? With

embedded systems, that’s not science fiction
it’s a real possibility! In this topic, you’ll explore
how to bring your big ideas to life, starting with
fun and simple projects like blinking LEDs.

As you build your skills, you’ll unlock the ability
to create powerful systems that automate

everyday tasks. Whether you’re dreaming of
robots or smart gardens, it all starts here.

Dive in, get creative, and enjoy learning by
doing!

4

Think Big, Start Small, Have
Fun: Your Journey into

 Embedded Systems Journey

Lesson 2 :Install Arduino IDE and make your first LED blink!
1.	 Download Arduino IDE: Go to [https://www.arduino.cc/en/software](https://www.

arduino.cc/en/software) and download the software.

2.	 Connect Your Arduino: Plug in your Arduino Uno using a USB cable.

3.	 Upload Your First Code: Open the Arduino IDE, go to File >

4.	 Examples > 01.Basics > Blink, and click Upload. If the LED on the board blinks,
congratulations—you’ve just written your first embedded system program!

What You Will Learn

	⭐ How to download the Arduino library files.
	⭐ How to instal the Arduino library in Proteus 8.
	⭐ How to verify that the library has been added successfully.

What You Need

Proteus 8 Software: This is the program where you will simulate your circuits.
Arduino Library Files: You will download these files from a link provided in the video.
https://www.youtube.com/watch?v=TKxAkE3837A

5

Figure 1.1: Video
How to Add Arduino Library in
Proteus 8

Step by step Instructions

Step 1: Open Proteus 8

Open the Proteus 8 software on your computer.
Go to Schematic Capture (this is where you design your circuits).

Step 2: Search for Arduino

In the Device List(where you find components), search for "Arduino".
At first, you will only see Arduino headers (small parts of the Arduino board), but not the
full Arduino boards.

Step 3: Download the Arduino Library

Open your web browser (like Chrome or Firefox).
Go to the link provided in the video description. This link will take you to a Google Drive
page where you can download the Arduino library files.
Download the RAR file (a compressed file) that contains the Arduino library.

Step 4: Extract the Library Files

Find the downloaded RAR file on your computer.
Use a program like WinRAR or 7-Zip to extract (unzip) the files from the RAR file.
After extracting, you will see two files:
 A file with the .idx extension (e.g., `modalLibrary.idx`).
 A file with the .lib extension (e.g., `modalLibrary.lib`).

Step 5: Copy the Library Files to the Proteus Library Folder

Copy the two extracted files (`.idx` and `.lib`).
Now, you need to paste these files into the **Proteus library folder**. Here’s how to find it:
Option 1: Go to `C:\Program Files (x86)\Labcenter Electronics\Proteus 8 Professional\
LIBRARY`.
Option 2: If you don’t see the folder in `Program Files (x86)`, go to `C:\ProgramData\
Labcenter Electronics\Proteus 8 Professional\LIBRARY`. (Note: The `ProgramData` folder is
usually hidden, so you may need to enable "Show hidden files" in your computer settings.)
 Paste the copied files into the `LIBRARY` folder.

6

Step 6: Restart Proteus

Close the Proteus 8 software completely.

Open it again to make sure the new library files are loaded.

Step 7: Verify the Installation

 Go back to Schematic Capture in Proteus.

Search for "Arduino" in the Device List again.
Now, you should see a full list of Arduino boards and components (like Arduino Uno,
Arduino Mega, etc.).

Key Takeaways

This tutorial shows you how to manually add the Arduino library to Proteus 8.

By following these steps, you can use Arduino boards and components in your Proteus
simulations.
This is useful for testing your Arduino projects in a virtual environment before building
them with real hardware.

Why This is Useful
Simulate Arduino Projects: You can test your Arduino code and circuits in Proteus without

needing real hardware.
Save Time and Money: Simulation helps you find and fix mistakes before building the actual

project.
Learn Electronics: Proteus is a great tool for learning how electronic components work

together.

Try adding other libraries to Proteus (like sensors or displays).
Start simulating your own Arduino projects in Proteus.

7

What you’ll learn:
 - How to control an LED using Arduino.
 - Simulate your project using Tinkercad (no hardware needed!).
 - Write your first Arduino code and see it in action.

Step-by-Step Guide:
 1.Connect the LED: Connect an LED to your Arduino using a resistor to
protect it from too much current.
 2. Write the Code: Use the `digitalWrite()` function to turn the LED on and
off.
 3. Upload the Code: Upload the code to your Arduino and watch the LED
blink!

CHAPTER 2 – WEEK 2: ARDUINO LED BLINK
Lesson 3 : Arduino LED Blink

What you’ll learn:

	⭐ How to control an LED using Arduino.

	⭐ Simulate your project using Tinkercad (no hardware needed!).

	⭐ Write your first Arduino code and see it in action.

Step-by-Step Guide:

1.	 Connect the LED: Connect an LED to your Arduino using a resistor to protect it from
too much current.

2.	 Write the Code: Use the `digitalWrite()` function to turn the LED on and off.

3.	 Upload the Code: Upload the code to your Arduino and watch the LED blink!

8

Figure : 3.1
Augmented Reality (AR) Video: LED Blink
with Arduino

The "LED Blink" application is one of the most basic and fundamental projects when
starting with Arduino. It helps users get familiar with the basic setup and program-
ming of the Arduino platform. Here are some variations and applications of the "LED
Blink" project:
1. Basic LED Blink (Standard Example)

Goal: Blink an LED on the Arduino board on and off with a 1-second interval.

Code Example:
cpp
CopyEdit
void setup() {
 pinMode(LED_BUILTIN, OUTPUT); // Set the built-in LED pin as output
}

void loop() {
 digitalWrite(LED_BUILTIN, HIGH); // Turn the LED on
 delay(1000); // Wait for 1 second
 digitalWrite(LED_BUILTIN, LOW); // Turn the LED off
 delay(1000); // Wait for 1 second
}

9

LED Blink with Different Intervals
•	 Goal: Blink an LED with different time intervals, e.g., blinking faster or
slower.
•	 Code Example:
cpp
CopyEdit
void setup() {
 pinMode(LED_BUILTIN, OUTPUT);
}

void loop() {
 digitalWrite(LED_BUILTIN, HIGH); // Turn the LED on
 delay(500); // 500 ms delay (half a second)
 digitalWrite(LED_BUILTIN, LOW); // Turn the LED off
 delay(2000); // 2-second delay
}

10

Figure 3.2 : How to Blink an LED with Arduino
https://youtu.be/FKekzzj5844?si=c7D-bfrOBXfV-CqR

LED Blink with Button Control
Objective: Use a push button to control the LED’s blinking behavior, such as
toggling it on and off or adjusting the blink speed.

Code Example:
cpp
CopyEdit
int buttonPin = 2; // Button input pin
int ledPin = LED_BUILTIN; // LED output pin
int buttonState = 0; // Variable to store button state

void setup() {
 pinMode(buttonPin, INPUT);
 pinMode(ledPin, OUTPUT);
}

void loop() {
 buttonState = digitalRead(buttonPin);

 if (buttonState == HIGH) {
 digitalWrite(ledPin, HIGH); // Turn LED on when button is pressed
 } else {
 digitalWrite(ledPin, LOW); // Turn LED off when button is not pressed
 }
}

int buttonState = 0; // Variable to store button state

void setup() {
 pinMode(buttonPin, INPUT);
 pinMode(ledPin, OUTPUT);
}

void loop() {
 buttonState = digitalRead(buttonPin);

 if (buttonState == HIGH) {
 digitalWrite(ledPin, HIGH); // Turn LED on when button is pressed
 } else {
 digitalWrite(ledPin, LOW); // Turn LED off when button is not pressed
 }
}

11

Figure 3.3: Blinking LED Using A Button
https://www.youtube.com/watch?v=7_q2x-
N5Rl60

LED Blink with PWM (Pulse Width Modulation)
Objective: Control the brightness of the LED by varying the PWM value.

Code Example:
cpp
CopyEdit
int ledPin = 9; // LED connected to pin 9 (PWM-capable pin)
int brightness = 0; // Initial brightness (0 = off, 255 = fully bright)
int fadeAmount = 5; // Amount by which the brightness changes

void setup() {
 pinMode(ledPin, OUTPUT);
}

void loop() {
 analogWrite(ledPin, brightness); // Set LED brightness using PWM
 brightness = brightness + fadeAmount; // Change brightness for fading effect

 if (brightness <= 0 || brightness >= 255) {
 fadeAmount = -fadeAmount; // Reverse the direction of fading when limits are reached
 }

 delay(30); // Delay to slow down the fading
}

12

Figure 3.4: How Does PWM Work?
https://www.youtube.com/shorts/aeE0u1J-1pg

LED Blink with Random Intervals
Objective: Make an LED blink at unpredictable times by using random time intervals be-
tween each blink.
Code Example:
cpp
CopyEdit
int ledPin = LED_BUILTIN;

void setup() {
 pinMode(ledPin, OUTPUT);
}

void loop() {
 digitalWrite(ledPin, HIGH); // Turn LED on
 delay(random(500, 2000)); // Random delay between 500 ms to 2 seconds
 digitalWrite(ledPin, LOW); // Turn LED off
 delay(random(500, 2000)); // Random delay between 500 ms to 2 seconds
}

13

Figure 3.5:Three LED Blink at Random Intervals with Arduino
https://www.youtube.com/watch?v=YvU1NApos1Y

LED Blink with Serial Monitor Feedback
Objective:Display a message on the serial monitor every time the LED blinks to provide
real-time feedback.

Code Example:
cpp
CopyEdit
int ledPin = LED_BUILTIN;

void setup() {
 pinMode(ledPin, OUTPUT);
 Serial.begin(9600); // Start serial communication
}

void loop() {
 digitalWrite(ledPin, HIGH); // Turn LED on
 Serial.println("LED ON");
 delay(1000); // Wait for 1 second

 digitalWrite(ledPin, LOW); // Turn LED off
 Serial.println("LED OFF");
 delay(1000); // Wait for 1 second
}

14

Figure 3.6:TURN ON LED USING SERIAL MONITOR
https://youtu.be/gbA0jmrpod4?si=qxVYBcqtG7PNmnXC

LED Blink with Variable Blink Speed via Potentiometer
Objective: Control the blink speed of the LED using a potentiometer.

Code Example:
cpp
CopyEdit
int potPin = A0; // Potentiometer input pin
int ledPin = LED_BUILTIN; // LED output pin
int potValue = 0; // Variable to store potentiometer value
int delayTime = 0; // Variable to store delay time

void setup() {
 pinMode(ledPin, OUTPUT);
 Serial.begin(9600);
}

void loop() {
 potValue = analogRead(potPin); // Read potentiometer value
 delayTime = map(potValue, 0, 1023, 100, 1000); // Map potentiometer value to delay
range

 digitalWrite(ledPin, HIGH); // Turn LED on
 delay(delayTime); // Wait for mapped delay time
 digitalWrite(ledPin, LOW); // Turn LED off
 delay(delayTime); // Wait for mapped delay time
}

15

Figure 3.7:Potentiometer controls LED Fade in and out and LED
blink speed https://www.youtube.com/shorts/m1WptIf2SI0

LED Blink with External Components (e.g., Transistor or MOSFET)
 Objective: Control a higher-power LED (or multiple LEDs) using a transistor or MOSFET.
Application: Use a transistor as a switch to control an external LED array, which requires
more current than the Arduino pin can supply.
Each of these variations builds on the basic concept of blinking an LED, but introduces more
complexity and interactivity with the hardware, allowing for a range of applications, from
simple control to more advanced systems that respond to external input or feedback.

16

Figure 3.8:Simple led flasher using bc547
https://youtube.com/shorts/F3jVPovUI80?si=v8tDKg-7SnPW6OPF

Figure 3.9:Transistor controlled by Arduino (as amplifier)
https://www.youtube.com/shorts/uywv1ZedFFU

Applications of "LED Blink with Different Intervals"
Varying the blink intervals of an LED opens up practical and creative applications across
industries. Here are some key use cases:

Status Indicators for Devices
Devices often use distinct LED blink patterns to indicate their current states: for example,
a network router may show slow blinks (e.g., 2 seconds on/off) to indicate standby, fast
blinks (0.5 seconds on/off) during active data transmission, and irregular double-blinks to
signal errors or connection issues. Similarly, smart home devices might blink slowly when
searching for a Wi-Fi network, blink rapidly when actively syncing or updating, and flash in
irregular bursts to warn of low battery or hardware faults.

Traffic/Pedestrian Signals

Traffic and pedestrian signals rely on timed blinking
patterns to ensure safety and regulate movement. For
instance, pedestrian crossing lights often blink slowly at
first, then speed up as the “walk” phase nears its end,
prompting people to finish crossing. Railway signals
may use alternating or flashing lights to indicate an
approaching train. Examples include countdown timers
at crosswalks that combine numeric displays with
blinking lights, and construction zone warning lights that
flash in rhythmic or alternating patterns to alert drivers
of lane changes or hazards ahead.

17

Figure 3.10 : Traffic/Pedestrian

Signals

Emergency/Alert Systems

Urgency signaling is achieved by using varying blink speeds to convey the severity of a
situation. For instance, slow blinks are often used for non-critical warnings, such as a low
fuel alert in a vehicle, allowing users to take action without immediate panic. In contrast,
rapid blinking is used for critical alerts, like fire alarms or system failures, demanding
immediate attention. Common examples include car dashboard indicators such as a blinking
check engine or tire pressure warning and industrial equipment fault lights, which may blink
faster as the issue becomes more severe or remains unresolved.

Interactive Art/Entertainment

Dynamic visual effects are created using programmable blink patterns that respond to
various inputs or are synchronized with external stimuli. For example, LEDs can blink in
time with music beats, using varying intervals to match the rhythm and tempo, creating an
immersive audio-visual experience. Additionally, sensors like motion or light detectors can
trigger real-time changes in the blink patterns, making the display interactive. Examples
include light installations that change colors and patterns as people move nearby, and
stage lighting systems that blink, pulse, or fade in coordination with concerts or theater
performances to enhance the mood and storytelling.

18

Figure 3.11 : Interactive Art or Entertainment

Figure 3.12 :Emergency or Alert Systems

Wearable technology and health monitoring devices use visual blink patterns to provide
real-time feedback on health metrics. For example, LEDs may simulate a heartbeat with
irregular or pulsing blinks that reflect the user's actual pulse rate. Similarly, changes in blink
intervals can indicate rising or falling values, such as increasing heart rate or fluctuating
glucose levels. Common applications include fitness trackers that blink to remind users to
move or to signal goal completion, and medical devices that use flashing alerts to warn of
abnormal readings like high blood pressure or irregular heart rhythms.

Wearable Tech/Health Monitoring

Educational Tools

Educational tools often use blinking LEDs to teach fundamental concepts in timing, coding,
and electronics. For instance, students can program loops and delays to control LED blink
rates, helping them understand how timing works in code. They can also experiment with
analog vs. digital signals, learning how pulse width modulation or binary states affect
behavior. Examples include classroom kits for learning Arduino basics, where blinking an
LED is often the first hands-on exercise, and DIY science projects like simulating Morse code,
which reinforce both programming logic and communication principles.

19

Figure 3.13 :Wearable Tech/Health Monitoring

Figure 3.14 :Educational Tools

Automotive Lighting
Automotive lighting uses adaptive blink patterns to improve visibility and enhance safety on
the road. For example, turn signals may blink faster during quick lane changes to draw more
attention, while brake lights can flash rapidly during sudden or emergency stops to warn
drivers behind more effectively. Modern vehicles often feature dynamic turn signals that
create a flowing light effect to indicate direction more clearly. Similarly, bicycle taillights come
with multiple blink modes steady, pulsing, or strobe to increase visibility in various conditions
and alert nearby traffic.

Security systems often use unpredictable blink patterns to deter intruders and enhance
protection. One method is to randomize LED blink intervals to simulate occupancy in an
empty house, making it appear as though someone is home. In more active systems,
multiple LEDs may blink in sync when an alarm is triggered, drawing attention to a potential
threat. Examples include fake security cameras that feature blinking LEDs to give the illusion
of active surveillance, and smart security lights that flash or change patterns in response to
motion, alerting homeowners and scaring off potential intruders.

20

Security Systems

Figure 3.15 :Automotive Lighting

Lesson 3 : 7-Segment Display
What you’ll learn:
How to use 7-segment and LCD displays.
Build a project using Proteus (a simulation tool).
Troubleshoot common issues and improve your coding skills

A 7-segment display is a simple electronic component used to display numbers and some
letters. It is commonly found in devices like digital clocks, calculators, and electronic meters.
The name "7-segment" comes from the fact that it has 7 individual light segments (labeled
A to G) that can be turned on or off to form different numbers or characters.

21
Figure 3.16 : 7 Segment Display

How Does a 7-Segment Display Work?

A 7-segment display consists of seven individual LED segments arranged in a figure-eight
pattern. Each segment is labeled (A through G) and can be controlled separately to form
various numbers or letters.

For example:

* To display the number "1", only segments B and C are illuminated.
* To display the number "8", all seven segments (A to G) are turned on simultaneously.

By selectively turning segments on or off, the display can represent digits from 0 to 9 and
some alphabetic characters.

Types of 7-Segment Display
There are two main types of 7-segment displays:

1. Common Cathode (CC):
 All the negative terminals (cathodes) of the LEDs are connected together.
 To turn on a segment, you need to supply positive voltage to that segment.

2. Common Anode (CA):
 All the positive terminals (anodes) of the LEDs are connected together.
 To turn on a segment, you need to ground (connect to negative) that segment.

Figure 3.18 : Augmented Reality (AR) Video,
7 Segment with Arduino

Figure 3.17 : 7 Segment pin

22

Pin Configuration
A 7-segment display usually has 10 pins:
7 pins for the segments (A to G).
1 pin for the decimal point (optional, used for showing decimals like “5.2”).
2 pins for the common cathode or common anode (depending on the type of display).How

to Use a 7-Segment Display

How to Use a 7-Segment Display
To use a 7-segment display, you need to:
1. Connect the display to a microcontroller (like Arduino) or a driver circuit.
2. Control the segmentsby sending signals to the pins.
3. Write code to turn on/off the segments to display the desired number or character.

Example: Displaying Numbers

Here’s how you can display the number "3" on a common cathode 7-segment display:
•	 Turn on segments: A, B, C, D, G.
•	 Turn off segments: E, F.

For a common anode display, you would do the opposite:
•	 Turn off segments: A, B, C, D, G.
•	 Turn on segments: E, F.

Applications of 7-Segment Displays
•	 Digital Clocks: Used to show hours, minutes, and seconds.
•	 Calculators: Used to display numbers and results.
•	 Electronic Meters: Used in devices like voltmeters, ammeters, and thermometers.
•	 Scoreboards: Used in sports to show scores or timers.

23

Figure : 3.19 Segment pin configurations for
the common cathode or common anode

Limitations of 7-Segment Displays
•	 Limited characters: Can only display numbers and a few letters (like A, B, C, D, E, F).
•	 Not suitable for complex graphics: Cannot display images or detailed text.

Example Code for Arduino
Here’s a simple Arduino code to display the number "5" on a common cathode 7-segment
display:

```cpp
void setup() {
  // Set pins 2 to 8 as OUTPUT
  for (int i = 2; i <= 8; i++) {
    pinMode(i, OUTPUT);
  }
}

void loop() {
  // Display "5"
  digitalWrite(2, HIGH);  // Turn on segment A
  digitalWrite(3, HIGH);  // Turn on segment B
  digitalWrite(4, LOW);   // Turn off segment C
  digitalWrite(5, HIGH);  // Turn on segment D
 digitalWrite(6, LOW);   // Turn off segment E
  digitalWrite(7, HIGH);  // Turn on segment F
  digitalWrite(8, HIGH);  // Turn on segment G
}
```

Summary
A 7-segment display is a simple and versatile component used to show numbers and some
letters. It is widely used in electronics because it is easy to control, low cost, and energy
efficient. Whether you're building a digital clock, a calculator, or a scoreboard, a 7-segment
display is a great choice for displaying numeric information.

 Can you create a countdown timer using the 7-segment display?

24

LESSON 4 :LCD DISPLAY

How Does an LCD Display Work?
•	 An LCD consists of liquid crystals sandwiched between two layers of glass or plastic.
•	 These liquid crystals can change their alignment when an electric current is applied,

which controls how much light passes through.
•	 The display is backlit (usually with LEDs), so when light passes through the liquid crys-

tals, it creates visible text or images.
•	 Each character or pixel on the display is made up of smaller segments (like dots or bars)

that can be turned on or off.

Character LCD:
•	 Used to display text and simple symbols.
•	 Common sizes: 16x2 (16 characters per line, 2 lines) or 20x4 (20 characters per line, 4

lines).
•	 Example: Used in calculators, small displays for appliances, or Arduino projects.

Graphical LCD:
•	 Used to display images, graphics, and complex text.
•	 Example: Used in smartphones, computer monitors, and advanced embedded systems.

25

Pin Configuration of a Character LCD
1.	 A typical 16x2 character LCD has 16 pins, but not all are always used. Here are

the most important pins:
2.	 VSS: Ground (0V).
3.	 VDD/VEE: Power supply (usually 5V).
4.	 V0: Contrast control (adjusts display brightness).
5.	 RS: Register Select (switches between command and data modes).
6.	 RW: Read/Write (used to read or write data).
7.	 E: Enable (starts reading/writing data).
8.	 D0-D7: Data pins (send data or commands to the display).
9.	 A: Backlight anode (+).
10.	 K: Backlight cathode (-).

How to Use an LCD Display
To use an LCD display, you first need to connect it to a microcontroller like an Arduino
or a driver circuit using the appropriate pins for power, ground, data, and control. Once
connected, you send initialization commands to set up the display, such as clearing the
screen or setting the cursor position. After that, you can send data like text or numbers
which the LCD will show on its screen.

26

Figure 3.20 : Pin configuration of LCD

Example: Connecting a 16x2 LCD to Arduino

Here’s how you can connect a 16x2 LCD to an Arduino and display "Embedded Robotic 2":

Wiring
- VSS → Arduino GND
- VDD → Arduino 5V
- V0 → Potentiometer (to adjust contrast)
- RS → Arduino Pin 12
- RW → Arduino GND
- E → Arduino Pin 11
- D4-D7 → Arduino Pins 5, 4, 3, 2
- A → Arduino 5V (for backlight)
- K → Arduino GND (for backlight)

Figure 3.21 :Augmented Reality (AR) Video LCD with
Arduino

Figure 3.22 : Wiring Circuit: LCD with Arduino 27

Arduino Code
```cpp
#include <LiquidCrystal.h>  // Include the LCD library

// Initialize the LCD with the correct pins
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

void setup() {
  // Set up the LCD's number of columns and rows
  lcd.begin(16, 2);  // 16 columns, 2 rows
  lcd.print(" Embedded Robotic 2");  // Display text
}

void loop() {
  // Move the cursor to the second line
  lcd.setCursor(0, 1);
  lcd.print("LCD Tutorial");  // Display more text
}
```

Applications of LCD Displays

LCD displays are widely used across various fields due to their versatility and clarity. In
consumer electronics, they are commonly found in TVs, smartphones, and computer monitors.
In industrial equipment, LCDs serve as interfaces in control panels and machinery displays.
Medical devices use them for patient monitoring and diagnostic screens, providing clear and
accurate readouts. Additionally, in embedded systems, LCDs are frequently integrated with
platforms like Arduino and Raspberry Pi to display data in real-time, making them essential in
both educational and practical applications.

28Figure 3.23 : LCD in consumer electronics

Advantages of LCD Displays
•	 Low power consumption: Uses less energy compared to other display types.
•	 Lightweight and thin: Easy to integrate into small devices.
•	 Good visibility: Works well in most lighting conditions.
•	 Affordable: Cost-effective for many applications.

Limitations of LCD Displays
LCD displays have some limitations, including restricted viewing angles, which can cause
the screen to appear dim or distorted when viewed from the side. They also tend to have
a slower response time, making them less suitable for fast-moving visuals like those in
gaming. Additionally, LCDs require a backlight to be visible, which means they can be
difficult to read in low-light conditions if the backlight is insufficient or turned off.

Summary
An LCD display is a versatile and widely used component for showing text, numbers, or
graphics in electronic devices. It is easy to use, energy-efficient, and affordable, making it a
popular choice for both simple and complex projects. Whether you're building a digital clock,
a weather station, or a small information display, an LCD is a great option.

29

Figure 3.24 : interfaces in control panels and
machinery displays

 Figure 3.25: Interfaces in control
machinery displays

Review Questions
Section 1: Introduction to Embedded Systems
1.	 What is an embedded system? Give two real-life examples.
2.	 How are embedded systems different from general-purpose computers?
3.	 Why is Arduino popular in embedded systems learning?

Section 2: Getting Started with Arduino
4.	 What is the function of a microcontroller in an embedded system?
5.	 Write a simple Arduino code to blink an LED.
6.	 Name three basic components commonly used with Arduino.

Section 3: Sensors and Inputs
7.	 What is a sensor? Name two types and their functions.
8.	 How does a temperature sensor work with Arduino?
9.	 What is the purpose of analog and digital pins?

Section 4: Automation Projects
10.	Describe a project where Arduino can be used to automate a task at home.
11.	How would you use a moisture sensor to water plants automatically?
12.	What components would you need to build a room-cleaning robot?

Section 5: Augmented Reality Integration
13.	What is augmented reality (AR), and how can it help you learn electronics?
14.	List one benefit of using AR in embedded systems education.
15.	How can AR be used to visualize circuit components or wiring?

Bonus: Think & Reflect
16.	If you could invent a device using Arduino, what would it be? Describe how it works.
17.	Why is it important to “start small” in embedded systems projects?
18.	How did the flipped classroom model help you understand the topic better?

3030

31

Review Questions and Answers
Section 1: Introduction to Embedded Systems
1. What is an embedded system? Give two real-life examples.
 An embedded system is a computer system with a dedicated function within a larger 		
system.
 Examples: Microwave oven, Smartwatch.
2. How are embedded systems different from general-purpose computers?
 Embedded systems are designed for specific tasks, while general-purpose computers
can run multiple programs and functions.
3. Why is Arduino popular in embedded systems learning?**
 Arduino is beginner-friendly, low-cost, open-source, and has a large online community 	
for support and tutorials.
Section 2: Getting Started with Arduino
4. What is the function of a microcontroller in an embedded system?**
 A microcontroller processes input from sensors and controls output devices based on
programmed instructions.
5. Write a simple Arduino code to blink an LED.**
   ```cpp
   void setup() {
     pinMode(13, OUTPUT);
   }
   void loop() {
     digitalWrite(13, HIGH);
     delay(1000);
     digitalWrite(13, LOW);
     delay(1000);
   }
   ```
6. Name three basic components commonly used with Arduino.
 LED, push button, temperature sensor

32

Section 3: Sensors and Inputs
7. What is a sensor? Name two types and their functions.
 A sensor detects changes in the environment and sends data to the system.
	 Examples:
	 Temperature sensor: detects heat
	 Motion sensor: detects movement

8. How does a temperature sensor work with Arduino?
 It measures temperature and sends analog signals to Arduino, which converts them into
readable data.

9. What is the purpose of analog and digital pins?
 Analog pins read continuous voltage values (e.g., sensors), while digital pins read or out-
put only HIGH or LOW (ON/OFF).

Section 4: Automation Projects
10. Describe a project where Arduino can be used to automate a task at home.
 A smart light system that turns on automatically when someone enters a room using a
motion sensor and Arduino.

11. How would you use a moisture sensor to water plants automatically?
 Connect the sensor to Arduino to detect soil moisture. If the level is low, the Arduino acti-
vates a water pump.

12. What components would you need to build a room-cleaning robot?
 Microcontroller, motors, wheels, sensors (ultrasonic/IR), battery, and chassis.

33

Section 5: Augmented Reality Integration
13. What is augmented reality (AR), and how can it help you learn electronics?
 AR overlays digital content onto the real world, helping learners visualize circuits and
components in 3D.

14. List one benefit of using AR in embedded systems education.
 AR makes complex hardware easier to understand through interactive, 3D visualizations.

15. How can AR be used to visualize circuit components or wiring?
 AR can project 3D models of circuits or components on-screen, showing how they connect
without needing physical parts.

Bonus: Think & Reflect
16. If you could invent a device using Arduino, what would it be? Describe how it works.
 Example answer: A smart pet feeder that dispenses food at set times using a servo motor 	
and real-time clock module.

17. Why is it important to “start small” in embedded systems projects?
 Starting with simple projects builds confidence and understanding before moving to more
complex systems.

18. How did the flipped classroom model help you understand the topic better?
 Example answer: It allowed me to learn theory at my own pace and focus on hands-on
practice during class time.

34

REFERENCES

Arduino. (n.d.). Arduino IDE Downloads. Arduino.cc. https://www.arduino.cc/en/software

Labcenter Electronics. (2023). Proteus Design Suite – Simulation & PCB Design Software.
https://www.labcenter.com/

Espressif Systems. (2022). ESP32 Series Datasheet and Resources. https://docs.espressif.
com/projects/esp-idf/en/latest/esp32/

Monk, S. (2016). Programming Arduino: Getting Started with Sketches (2nd ed.). McGraw-
Hill Education.

McWhorter, P. (2020). Arduino Tutorial #1 - Getting Started and LED Blink [Video]. YouTube.
https://www.youtube.com/watch?v=fJWR7dBuc18

Simon, J. (2011). Practical Electronics for Inventors (3rd ed.). McGraw-Hill Education.

Banzi, M., & Shiloh, M. (2014). Getting Started with Arduino (3rd ed.). Maker Media, Inc.

YouTube. (2022). The Arduino Starter Kit Tutorials. https://www.youtube.com/
playlist?list=PLT6ZzNi5fYd8VZPFQh3a9tsC34G4wVbVW

Tinkercad. (2011). Circuits – Learn & Simulate Arduino Projects Online. https://www.
tinkercad.com/learn/circuits

MathWorks. (2013.). Simulink Support Package for Arduino Hardware. https://www.
mathworks.com/hardware-support/arduino-simulink.html

35

APPENDICES

1. Padlet Embedded Systems

2. Survey
https://forms.gle/zjp4ujr1aVaUXEoi6

