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Preface

This book includes a thorough study of continuous and discrete time 

signals and systems, as well as several GNU OCTAVE examples. It is

intended for junior and seniorelectronic engineering students, as well as 

working professionals who wish to study independently. A fundamental 

course in differential and integral calculus, as well as basic electric circuit

theory, are required.

This book is suitable for one semester course. The author has taught the 

subject material at Polytechnic Merlimau in Melaka, Malaysia, for many 

years and has covered all of the contents in 14 weeks, with two lecture 

hours weekly. GNU Octave is open- source software that can be freely

distributed. Students may redistribute and/or modifyit under the 

provisions of the Free Software Foundation's GNU General Public License

(GPL).

In Chapter 1, the fundamental signals are covered, supported with 

various examples. This chapter's goal is to teach the reader how to 

express any continuous-time or discrete- time waveform in terms of the 

unit step function, unit impulse function, and subsequent operation. The 

convolution integral for continuous-time signals and the convolution sum 

for discrete-time signals are discussed in Chapters 2. The Laplace

Transform and continuous-time signals are introduced in Chapter 3. The 

discrete-timesignals and the Z transform are discussed in Chapter 4. The

Fourier Transform and FastFourier Transform (FFT) are covered in 

Chapters 5 and 6, with the most basic explanations available.
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Signals and 
Systems

Signals and systems theory and idea are
required in practically all electrical
engineering specialties, as well as many
other technical and scientific disciplines.
The mathematical description and
representation of signals and systems, as
well as their classifications, are covered in
this chapter along with a few key
fundamental signals that are critical to the
studies.

Discrete time and continuous time are
two different frameworks for modelling
variables that change over time in
mathematical dynamics.

Time is considered as a discrete variable
in discrete time, which regards values of
variables as occurring at distinct, separate
"points in time," or equivalently as
remaining unchanging across each non-
zero region of time.

As time passes from one time period to
the next, a non-time variable jumps from
one value to the next. This perception of
time is analogous to a digital clock that
displays a fixed reading, for example, of
10:37 for a period of time before jumping
to a new fixed reading of 10:38, and so
on. In most cases, measurements are
taken at sequential integer values of the
variable time.

Chapter 1 : Signals and Systems

SIGNAL AND SYSTEM WITH GNU OCTAVE 

SIMULATION
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A signal is a function that represents a
physical quantity or variable and usually
incorporates information about the
phenomenon's behavior or nature. In an
resistor-capacitor (RC) circuit, the signal
could represent the voltage across the
capacitor or the current flowing through
the resistor, for example. A signal is
mathematically expressed as a function of
the independent variable t. t usually
stands for time. Thus, a signal is denoted
by x(t).
Continuous-time Signal

Continuous time considers variables to
have a specific value for an infinitesimally
short period of time. There are an endless
number of points in time between any
two points in time.

The variable "time" can span the full real
number line or a subset of it, such as the
non-negative reals, depending on the
context. As a result, time is regarded as a
continuous variable.

A continuous signal, also known as a
continuous-time signal, is a variable
quantity (a signal) with a continuous
domain, which is generally time (e.g., a
connected interval of the reals). That is,
the domain of the function is an
uncountable set. The functions
themselves do not have to be continuous.

In short, a signal x(t) is a continuous-time
signal if t is a continuous variable.

Basic Continuous-time Signal

A. Unit Step Function

The unit step function u(t) , also known as
the Heaviside unit function , is defined as

Classification of Signal

SIGNAL AND SYSTEM WITH GNU OCTAVE 

SIMULATION

Chapter 1 : Signals and Systems

Fig. 1.1: Graphical representation of continuous-
time signal

Fig. 1.2: Unit Step Function



Similarly, the shifted unit step function
u(t – t0) is defined as

B. Unit Impulse Function

The unit impulse function (t), also known
as the Dirac delta function, plays a central
role in system analysis.

Chapter 1 : Signals and Systems

Similarly, the delayed delta function δ(t – t0)
is shown in Fig.1.5

Fig. 1.3: Shifted Unit Step Function

Fig. 1.4: Unit impulse function

Fig. 1.5: Shifted Unit impulse function

Source: pixabay
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C. Sinusoidal Signals

A continuous-time sinusoidal signal can
be expressed as

x(t) = A cos (ω0t + θ)

where
A is the amplitude (real)
ω0 is the radian frequency in
radians per second
θ is the phase angle in radians.

Fig. 1.6 : Continuous-time sinusoidal signal.

Discrete-time Signal

A discrete signal, also known as a
discrete-time signal, is a time series made
up of a succession of values. A discrete-
time signal, unlike a continuous-time
signal, does not have a continuous
argument; nonetheless, it can be created
by sampling from a continuous-time
signal.

A sample rate is assigned to a discrete-
time signal acquired by sampling a
sequence at evenly spaced periods.

Discrete-time signals can come from a
variety of places, but they usually fall into
one of two categories:
• By obtaining analogue signal values at

a fixed or variable pace. This is
referred to as sampling.

• By looking at a process that is
intrinsically discrete in time, such as
the weekly peak value of a specific
economic indicator.

In short, discrete-time signal x[n] may be
obtained by sampling a continuous-time
signal x(t). Since a discrete-time signal is
defined at discrete times, a discrete-time
signal is often identified as a sequence of
number denoted by x[n], where n is
integer.

Chapter 1 : Signals and Systems

Fig. 1.7: Graphical representation of discrete-time 
signal
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Basic Discrete-time Signal

A. Unit Step Sequence

The unit step sequence u[n] is defined as

Similarly, the shifted unit step sequence
u[n – k] is defined as

Chapter 1 : Signals and Systems

In short, a signal x(t) is a continuous-time
signal if t is a continuous variable.

B. Unit Impulse Sequence

The unit impulse (or unit sample)
sequence δ[n] is defined as

Fig. 1.8: Unit step sequence

Fig. 1.9: Shifted unit step sequence

Source: pixabay
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Fig. 1.10 : Unit impulse sequence

Similarly, the shifted unit impulse (or
sample) sequence δ[n – k] is defined as

Fig. 1.11 : Shifted unit impulse sequence

C. Sinusoidal Sequence

A sinusoidal sequence can be expressed
as

x[n] = A cos (Ωon + θ)

Chapter 1 : Signals and Systems

Fig. 1.12: Example of sinusoidal sequence

SIGNAL AND SYSTEM WITH GNU OCTAVE 

SIMULATION
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Simulation

Students can learn how to utilize the
octave-online software in order to create
numerous waveforms that are commonly
used for continuous time signal
processing and discrete time signal
processing. GNU Octave, an open-source
alternative to MATLAB, has a web
interface called Octave Online.

Chapter 1 : Signals and Systems

Basic Continuous-time Signal

A. Unit Step Function

The unit steps are already incorporated
into GNU Octave. The names of the
mathematicians who utilized them in
their work are used to identify them.
Heaviside(t) is the name of the unit step
function. The example below shows how
they can be used.

t=-20:0.001:20 
y=heaviside(t) % Create unit step function
plot(t,y) % Plot unit step function
axis([-10 10 -2 2]) % Define axis margin

Source: pixabay
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GNU Octave displays the unit step function waveform as shown in Fig. 1.13 where it
satisfies the definition of unit step function as

B. Unit Impulse Function

Similarly , the unit impulse function waveform is illustrated using the below example :

8

Chapter 1 : Signals and Systems

Fig. 1.13: Unit step function waveform 

t=-10:10 % Set column
figure(1) % Create a new figure window for plotting
x=[t==0] % Set impulse at t=0
plot(t,x) % Create simple x-y plots

SIGNAL AND SYSTEM WITH GNU OCTAVE 

SIMULATION



GNU Octave display unit impulse function waveform as shown in Fig. 1.14 where it
satisfies the definition of unit impulse function as

C. Sinusoidal Signals

The continuous-time sinusoidal waveform signals are illustrated using the following array
commands

9

Chapter 1 : Signals and Systems

Fig. 1.14: Unit step function waveform 

t=0:0.01:2; % set axis
f=2; % frequency
a=1; % amplitude
y=a*sin(2*pi*f*t); % define y as sinusoidal function
subplot(2,1,1); % define subplot
plot(t,y) % plot waveform
xlabel('t’); % x axis title
ylabel('y(t)’); % y axis title
title('Sinusoidal C-T Signal’) % plot title

SIGNAL AND SYSTEM WITH GNU OCTAVE 

SIMULATION



GNU Octave displays continuous-time sinusoidal signal waveform as shown in Fig. 1.15.

Basic Discrete-time Signal

A. Unit Step Sequence

The unit step sequence waveform signals are illustrated using the following array
commands

10

Chapter 1 : Signals and Systems

Fig. 1.15: Sinusoidal signal 

clc % Clear the terminal screen and move the cursor to 
the upper left corner.

clear all % Clear all local and global user-defined variables    
and all functions from the symbol table.

n = -5 : 5; % set n values
y = heaviside(n); % unit step
stem(n, y) % plot unit step
axis([-5 5 -1 2]) % set axis
xlabel('n’); % set x axis title
ylabel('u[n]’); % set y axis title

title({' Discrete Unit Step Function’}) % set waveform title

SIGNAL AND SYSTEM WITH GNU OCTAVE 

SIMULATION



GNU Octave displays the unit step sequence waveform as shown in Fig. 1.16 where it
satisfies the definition of unit step sequence as

B. Unit Impulse Sequence

Similarly , the unit impulse sequence waveform is illustrated using below example :

11

Chapter 1 : Signals and Systems

Fig. 1.16: Unit step sequence waveform 

clc % clear the terminal screen and move the cursor to 
the upper left corner.

n=-4:4; % set n values
delta_n=[0,0,0,0,1,0,0,0,0] % set unit impulse sequence
stem(n,delta_n) % plot

SIGNAL AND SYSTEM WITH GNU OCTAVE 

SIMULATION



GNU Octave displays the unit impulse sequence waveform as shown in Fig. 1.17 where it
satisfies the definition of unit impulse sequence as

C. Sinusoidal Sequence

The discrete-time sinusoidal waveform is illustrated using the following array commands

12

Chapter 1 : Signals and Systems

Fig. 1.17 : Unit impulse sequence waveform 

clc % clear the terminal screen 
t=0:0.05:2; % set axis
f=2; % frequency
a=1; % amplitude
y=a*sin(2*pi*f*t); % define y as sinusoidal sequence
subplot(2,1,1); % define subplot
stem(t,y) % plot waveform
xlabel('n’); % x axis title
ylabel('y[n]’); % y axis title
title({' Discrete-Time Sinusoidal waveform signal ’}) % plot title

SIGNAL AND SYSTEM WITH GNU OCTAVE 

SIMULATION



GNU Octave displays the discrete-time sinusoidal waveform as shown in Fig. 1.18.

Chapter 1 : Signals and Systems

Fig. 1.18 : Discrete-time sinusoidal waveform 

SIGNAL AND SYSTEM WITH GNU OCTAVE 

SIMULATION
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Exercises

Chapter 1 : Signals and Systems

1. Write the discrete-time cosine array commands . Use subplot (2,1,2). Label for each axis
and name the title of the graph.

2. Write the array commands for Impulse Shifted Function when δ (n- 2). Label for each
axis and name the title of the graph.

3. Write the waveform command for Step Shifted Function when u (n + 2). Label for each
axis and name the title of the graph.

Source: pixabay
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Linear Time-invariant 

(LTI) Systems

Linearity and time-invariance are two of
the most significant characteristics of
systems. The fundamental input-output
relationship for systems with these
features is developed in this chapter. The
input-output relationship for LTI systems
will be shown as to be defined by a
convolution operation.

The significance of the convolution
operation in LTI systems arises from the
fact that understanding an LTI system's
reaction to the unit impulse input helps
us to identify its output to any input
signals.

Chapter 2 : Linear Time-invariant (LTI) Systems

Source: pixabay
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Convolution of two continuous-time
signals x(t) and h(t) is denoted by

y(t) = x(t)*h(t) =  ׬−∞
∞

𝑥 𝜏 ℎ 𝑡 − 𝜏 𝑑𝜏

It is commonly called the convolution
integral. The convolution integral
operation involves the following four
steps:
a. The impulse response h(τ) is time-

reversed (that is, reflected about the
origin) to obtain h (–τ) and then
shifted by t to form h(t –τ) = h[–(τ –
t)], which is a function of τ with
parameter t.

b. The signal x(τ) and h(t – τ) are
multiplied together for all values of τ
with t fixed at some values.

c. The product x(τ)h(t – τ) is integrated
over all τ to produce a single output
value y(t).

d. Steps 1 to 3 are repeated as t varies
over – ∞ to ∞ to produce the entire
output y(t).

Example:

Evaluate y(t) = x(t) * h(t), where x(t) and
h(t) are shown in Fig. 2.1, by graphical
method.

Solution :

Step 1

Continuous-Time LTI System and 

Convolution Integral

Chapter 2 : Linear Time-invariant (LTI) Systems

Fig. 2.1

SIGNAL AND SYSTEM WITH GNU OCTAVE 
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Step 2

For t < 0

y(t) = 0

For 0 < t < 2

y(t) = 0׬
t
dτ = t 

For 2 < t < 3

y(t) = ׬t−2
t

dτ = 2

For 3 < t < 5

y(t) = ׬t−2
3

dτ = 5 - t  

For 5 < t

y(t) = 0

Step 3

Thus, we obtain

𝑓 𝑥 =

0, 𝑡 < 0
𝑡, 0 < 𝑡 ≤ 2
2, 2 < 𝑡 ≤ 3

5 − 𝑡, 3 < 𝑡 ≤ 5
0, 5 < 𝑡

Chapter 2 : Linear Time-invariant (LTI) Systems

SIGNAL AND SYSTEM WITH GNU OCTAVE 
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Convolution sum is the convolution of
two sequences x[n] and h[n] which is
denoted by

y[n] = x[n]*h[n]= σ𝑘=−∞
∞ ℎ 𝑘 𝑥[𝑛 − 𝑘]

The convolution sum operation involves
the following four steps:
a. The impulse response h[k] is time-

reversed (that is, reflected about the
origin) to obtain h[–k] and then
shifted by n to form h[n – k] = h[ – (k
– n)], which is a function of k with
parameter n.

b. Two sequences x[k] and h[n – k] are
multiplied together for all values of k
with n fixed at some values.

c. The product x[k]h[n – k] is summed
over all k to produce a single output
sample y[n].

d. Steps 1 to 3 are repeated as n varies
over – ∞ to ∞ to produce the entire
output y[n].

Example:

Evaluate y[n] = x[n] * h[n], where x[n] and
h[n] are shown in Fig.2.2 by a graphical
method.

Fig. 2.2
Solution :

Step 1
Sketch the sequences h[k], x[k] and h[n –
k], x[k] h[n – k] for different values of n

For n < 0

y[<0] = 0

Discrete-Time LTI System and 

Convolution Sum

Chapter 2 : Linear Time-invariant (LTI) Systems
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For n = 0

y[0] = 1

For n = 1

y[1] = 1 + 1 = 2

For n = 2

y[2] = 1 + 1 + 1 = 3

For n = 3

y[3] = 1 + 1 + 1 = 3

For n = 4

y[4] = 1 + 1 = 2

For n = 5

y[5] = 1

For n > 5

y[>5] = 0

Discrete-Time LTI System and 

Convolution Sum

Chapter 2 : Linear Time-invariant (LTI) Systems
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Step 2

Thus, summing x[k] h[n – k] for 0 ≤ n ≤ 5,
we obtain

y[0] = 1 y[1] = 2 y[2] = 3

y[3] = 3 y[4] = 2 y[5] = 1

or

y[n] = {1,2,3,3,2,1}

Discrete-Time LTI System and 

Convolution Sum

Chapter 2 : Linear Time-invariant (LTI) Systems
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Chapter 2 : Linear Time-invariant (LTI) Systems

Simulation
Students can learn how to utilize octave-online software to write and execute convolution
integral signals problem as well as convolution sum signals problem.

Convolution Integral using Heaviside Commands

We are utilizing the heaviside(t) command in GNU Octave to perform convolution integral
simulation. To simulate y(t) = x(t) * h(t), two unit step function are used as shown in Fig. 2.3.
The example of command array given shows how the convolution integral is done .

Fig. 2.3 : Input x(t) and impulse response h(t)

% set x(t)
t=-5:0.01:5;
x=heaviside(t)-heaviside(t-1);
subplot(3,1,1);
plot (t,x);
axis([-2 5 -1 1.5]); 
xlabel('t'); ylabel('x(t)=u(t)-u(t-1)');
title({'Convolution integral y(t)=x(t)*h(t)'})
% set h(t)
h=heaviside(t)- heaviside(t-4);
subplot(3,1,2);
plot (t,h);
axis([-2 5 -1 1.5]); 
xlabel('t'); ylabel('h(t)=u(t)-u(t-4)');
% perform convolution of x(t)*h(t)
m=conv(x,h); subplot(3,1,3); plot (m);
axis([0 2000 -100 150]); xlabel('t'); ylabel('y(t)'); 

SIGNAL AND SYSTEM WITH GNU OCTAVE 

SIMULATION



GNU Octave displays the continuous-time input x(t), impulse response h(t) and
convolution output y(t) as shown in Fig. 2.4.

22

Chapter 2 : Linear Time-invariant (LTI) Systems

Fig. 2.4: Continuous-time input x(t), impulse 
response h(t) and convolution output y(t)

SIGNAL AND SYSTEM WITH GNU OCTAVE 
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Convolution Sum

The convolution operation in GNU Octave is performed by using conv command. Similar
to convolution integral, convolution sum is perform on the input x[n] and impulse
response h[n]. The output is denoted by y[n]. The simulation on convolution sum of x[n]
and h[n] can be achieved by using the following command array example. Note that the
bold sequence is referring to n=0.

x[n] = ൜0,
1

3
, 
2

3
, 1, 

4

3
, ቅ
5

3
, 2

h[n] = {1, 1, 1 ,1 , 1}

23

Chapter 2 : Linear Time-invariant (LTI) Systems

clear all
%input signal 
n=0:6; 
xn=0:1/3:2;
figure, stem(n,xn) 
grid
xlabel('n’) 
ylabel('x[n]’) 
title('Input signal')

%impulse response
h1=-2;xh1=1;
h2=-1;xh2=1; 
h3=0;xh3=1; 
h4=1;xh4=1; 
h5=2;xh5=1; 
h=[h1,h2,h3,h4,h5];
hn=[xh1,xh2,xh3,xh4,xh5];
figure, stem(h,hn) 
grid
xlabel('n’) 
ylabel('h[n]’) 
title('Impulse Response')

SIGNAL AND SYSTEM WITH GNU OCTAVE 

SIMULATION
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Chapter 2 : Linear Time-invariant (LTI) Systems

%output signal 
yn=-2:8; 
y=conv(hn,xn); 
figure, stem(yn,y) 
grid
xlabel('n')
ylabel('y[n]')
title('Output 1 of Convolution Sum') 

GNU Octave displays the discrete-time input x[n], impulse response h[n] and convolution
output y[n] as shown in Fig. 2.5 to Fig. 2.7.

Fig. 2.5: Discrete-time input x[n]

SIGNAL AND SYSTEM WITH GNU OCTAVE 

SIMULATION
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Chapter 2 : Linear Time-invariant (LTI) Systems

Fig. 2.6: Discrete-time impulse response h[n]

Fig. 2.7: Convolution Sum output y[n]

SIGNAL AND SYSTEM WITH GNU OCTAVE 
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Exercises

Chapter 2 : Linear Time-invariant (LTI) Systems

1. Display the output graph of y(t) = x(t)*h(t) using convolution integral where
x(t) = 3u(t) – 3u(t - 1) and h(t) = 2u(t) – 3u(t - 4) . Write and execute the command.
Choose a suitable axis for all graphs x(t), h(t) and y(t).

2. Write and compute the output of LTI systems for the following signal below for
y[n]=x[n]*h[n] using octave online. Use the function conv or [y=conv(h,x)] to compute
the problem in convolution sum.

x[n] = {1,-1,2,-1,1}
h[n] = {1,1,1,1}

Source: pixabay
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Laplace Transform and 

Continuous-time LTI 

Systems
Laplace Transform is to convert time-
domain signals into complex s-domain
representations in order to analyze and
process the continuous-time signals and
system.

The Laplace transform of a signal x(t) is
represented by

𝑋 𝑠 = න
−∞

+∞

𝑥(𝑡)𝑒−𝑠𝑡

A valuable tool for analyzing linear time-
invariant systems is the Laplace
transform. The Laplace transform can be
written as a ratio of polynomials for a
large class of signals.

These rational transforms appear as
system functions for LTI systems that
meet linear constant coefficient
differential equations. The roots of
polynomials N(s) and D(s), also known as
zeros and poles, entirely determine
rational transforms up to a scaling factor.
As these roots are so crucial in studying
LTI systems, it is indeed easier to visualize
them on a pole-zero diagram.

Chapter 3 : Laplace Transform and Continuous-time LTI Systems

𝑋 𝑠 =
)𝑁(𝑠

)𝐷(𝑠

Source: pixabay
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The Laplace transform, named after its
inventor Pierre-Simon Laplace, is an integral
transform in mathematics. It converts a
real-valued function t (typically time) into a
complex-valued function s (complex
frequency).

In science and engineering, the transform
has numerous uses. The Fourier transform
and the Laplace transform are comparable.
A Fourier transform is a complex function of
a real variable (frequency), whereas a
Laplace transform is a complex function of a
complex variable.

In engineering and physics, the Laplace
transform is used to calculate the output of
a linear time-invariant system by convolving
its unit impulse response with the input
signal. When this calculation is done in
Laplace space, the convolution becomes a
multiplication, which is easier to solve due
to its algebraic nature.

The Laplace transform, which is widely
utilised in mechanical and electrical
engineering, can also be used to solve
differential equations. The Laplace
transform converts a linear differential
equation into an algebraic equation that can
be solved using algebraic techniques. The
inverse Laplace transform can then be used
to solve the original differential equation.

Chapter 3 : Laplace Transform and Continuous-time LTI Systems

Oliver Heaviside, an English electrical
engineer, suggested a comparable
technique without employing the
Laplace transform and this results in an
operational calculus is known as the
Heaviside calculus.

Example:

Find the Laplace Transform and the ROC 
of X(t) = 𝑒−𝑎𝑡 𝑢 𝑡 + 𝑒𝑎𝑡 𝑢 −𝑡

Solution :

From the Laplace Transform pairs table

𝐿 {𝑒−𝑎𝑡 𝑢 𝑡 } =
1

𝑠+𝑎
;  Re{s} > -a

𝐿{𝑒𝑎𝑡 𝑢 −𝑡 } = -
1

𝑠−𝑎
; Re{s} < a

x(t) X(s) ROC

𝑒−𝑎𝑡 𝑢 𝑡 1

𝑠 + 𝑎

Re{s} > -a

−𝑒𝑎𝑡 𝑢 −𝑡 1

𝑠 + 𝑎

Re{s} < -a

SIGNAL AND SYSTEM WITH GNU OCTAVE 
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Therefore,

X(s) =
1

𝑠+𝑎
-

1

𝑠−𝑎
-a< Re{s} < a

=
(s−a) –(s+a)
(𝑠+𝑎)(𝑠−𝑎)

=
−2a

(𝑠+𝑎)(𝑠−𝑎)

Thus,

Zeros : none
Poles : s = -a , s=a

The pole-zero diagram and ROC :

Example:

Find the inverse Laplace transform of the
following X(s)

a) X(s) =
1

𝑠+1
, Re{s} > -1

Chapter 3 : Laplace Transform and Continuous-time LTI Systems

b) X(s) =
1

𝑠+1
, Re{s} < -1

c) X(s) =
1

𝑠2+4

d) X(s) =
1

𝑠+2
-

1

𝑠+5
-

2

𝑠+5

e) X(s) =
6

𝑠2+36

Solution:

By referring to the Laplace Transform pairs
table

a) x(t) = L-1 1

𝑠+1
= 𝒆−𝒕 𝒖 𝒕

b) x(t) = L-1 1

𝑠+1
= -𝒆−𝒕 𝒖 −𝒕

c) x(t) = L-1 1

𝑠2+4

= L-1 1

𝑠2+22

= cos 2t u(t)

d) x(t) = L-1 1

𝑠+2
- L-1 1

𝑠+5
- L-1 2

𝑠+5

= 𝒆−𝟐𝒕𝒖 𝒕 - 𝒆−𝟓𝒕𝒖 𝒕 - 2𝒆−𝟓𝒕𝒖 𝒕

e) x(t) = L-1 6

𝑠2+36

= L-1 6

𝑠2+62

= sin 6t u(t)

Re {s}

Im

- 𝑎 𝑎
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Chapter 3 : Laplace Transform and Continuous-time LTI Systems

Simulation

GNU Octave is a high-level programming language that is mostly used for numerical
calculations. Octave is a numerical solver for linear and nonlinear problems, as well as a
language for executing various numerical experiments that is mainly compatible with
MATLAB. Other characteristics of this software are as follows:

• Free software that runs on GNU/Linux, macOS, BSD, and Microsoft Windows
with a powerful mathematics-oriented syntax and built-in 2D/3D charting and
visualisation features.

• Compatible with a wide range of Matlab scripts.

GNU Octave is used to compute Laplace transform using the laplace function. The following
example shows the program arrays. It is important for the user to download and install the
recent symbolic bundle package from https://github.com/cbm755/octsympy/releases

Laplace Transform

For each of the given continuous-time signal, Laplace transform are computed using the
following command array

𝑥 𝑡 = 4 sin 100𝑡 𝑢(𝑡)

Program :

syms t s
x=4*sin(100*t)*heaviside(t)
X=laplace(x,t,s)

Output :

X = (sym)

400
----------
s2 + 10000
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Chapter 3 : Laplace Transform and Continuous-time LTI Systems

Alternatively, a simpler programing is also applicable to perform Laplace transform as
shown in below example.

x(t) = 3t3 + 4e5t

Inverse Laplace Transforms

GNU Octave can also compute the inverse Laplace Transforms using function ilaplace as
shown in the following example.

𝑋 𝑠 =
10(𝑠 + 1)

𝑠2 + 4𝑠 + 3

Program :

syms s t
laplace ((3*t^3)+(4*e^(5*t)))

Output :

Program :

syms t s
x=10*(s+1)/(s^2+4*s+3)
ilaplace(x)
simplify(ans)
pretty(ans)

Output :
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Chapter 3 : Laplace Transform and Continuous-time LTI Systems

Poles and Zeros

The graphical representation of X(s) through its poles and zeros in the s-plane is referred to
as the pole-zero plot of X(s). GNU Octave can compute the poles and zeros of any given
continuous-time function and map the pole-zero plot as illustrated in the following
example.

𝑋 𝑠 =
10(𝑠 + 1)

𝑠2 + 4𝑠 + 3

The GNU Octave mapped the output as illustrated in Fig. 3.1 with zeros at s=0 and two poles
at s=-1 and s=-3

Program :

num=[10 10]
den=[1 4 3]
sys=tf(num, den)
pzmap(sys)
p,z]=pzmap(sys)

Fig. 3.1: pole-zero plot
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Exercises

Chapter 3 : Laplace Transform and Continuous-time LTI Systems

1. Compute the Laplace transform of the following functions. Write the program in GNU
Octave using laplace command.

a) x(t) = e (-1/4) t

b) x(t) = 8 cos (10t) . 5u(2t)

c) x(t) = 2 cos 2t + 3 sin 2t

d) x(t) = e-t sin 5t + e-4t cos 3t

2. Using GNU Octave, compute the inverse Laplace Transforms of the following
functions.

a) X s =
10(s+1)

s2+4s+8

b) X s =
6

s
+

2s

s2+16
−

4

s2

c) x(t) = 2 cos 2t + 3 sin 2t

d) x(t) = e-t sin 5t + e-4t cos 3t

Source: pixabay
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Chapter 3 : Laplace Transform and Continuous-time LTI Systems

3. Using GNU Octave, compute the poles and zeros of the following function.

a) X 𝑠 =
10(𝑠+1)

𝑠2+4𝑠+8

b) X s =
2s+100

s+1 s+8 (s+10)
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Z-transform and 

Discrete-time LTI 

Systems
The Z-transform translates a discrete-time
signal, which is a sequence of real or
complex values, into a complex
frequency-domain representation in
mathematics and signal processing.

It is possible to specify the Z-transform as
a one-sided or two-sided transform. The
formal power series X[z] defines the
bilateral or two-sided Z-transform of a
discrete-time signal x[n].

The inverse Z-transform is the reverse of
the Z-transform.

where C is a counterclockwise closed path
encircling the origin and entirely in the
region of convergence (ROC). In the case
where the ROC is causal, this means the
path C must encircle all of the poles of
X[z].

Chapter 4 : Z-transform and Discrete-time LTI Systems

𝑋(𝑧) = ෍

𝑛=−∞

∞

𝑥[𝑛]𝑧−𝑛

Source: pixabay
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The graphical representation of X(z) through
its poles and zeros in the z-plane is referred
to as the pole-zero plot of X(z)

Example:

Find the Z-Transform and the ROC of x[n] =

(
1

2
)𝑛𝑢[𝑛] + (−

1

3
)𝑛𝑢[𝑛]

Solution :

From the Z-Transform pairs table

𝑍 {(
1

2
)𝑛𝑢[𝑛]} =

𝑧

𝑧−
1

2

; |z| > |
1

2
|

𝑍{(−
1

3
)𝑛𝑢[𝑛]} = 

𝑧

𝑧+
1

3

; |z| > |
1

3
|

Therefore,

Chapter 4 : Z-transform and Discrete-time LTI Systems

Zero : z = 0 , z=
1

12

Poles : z=
1

2
, z= -

1

3

The pole-zero plot of X(z) :

x[n] X(z) ROC

(
1

2
)𝑛𝑢[𝑛

𝑧

𝑧 −
1
2

|z| > |
1

2
|

(−
1

3
)𝑛𝑢[𝑛]

𝑧

𝑧 +
1
3

|z| > |
1

3
|

𝑋(𝑧) =
𝑧

𝑧 −
1
2

+
𝑧

𝑧 +
1
3

))((

)(2

3
1

2
1

12
1

+−

−
=

zz

zz

Re {z}

Im

-
1

3
0      

1

12

1

2
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Chapter 4 : Z-transform and Discrete-time LTI Systems

Simulation

WolframAlpha is a Wolfram Research computational knowledge engine and answer engine.
It directly responds to factual enquiries by computing the answer using data from external
sources.

The simulation for z-transform and inverse z-transform utilizes WolframAlpha online and
GNU Octave . The WolframAlpha computes z-transform . From the result, the GNU Octave is
used to compute the poles and zeros and map the pole and zeros plot.

Z-Transform

The WolframAlpha online widget for z-transform can be accessed online at the
WolframAlpha website as shown in Fig. 4.1.

In this simulation, we use the sequence

x[n] = (
1

2
)𝑛𝑢[𝑛] + (

1

3
)𝑛𝑢[𝑛]

Fig. 4.1 WolframAlpha online widget for z-transform 
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Chapter 4 : Z-transform and Discrete-time LTI Systems

Key in the given sequence in the widget by using the heaviside command as follows

(((1/2)^n)*heaviside(n)) + (((1/3)^n)*heaviside(n))

Fig. 4.2 shows the z-transform of the given sequence,

The GNU Octave code commands for the pole and zeros plot are as follows. Although there
are two poles dan two zeros for the X(z), note that due to the programming contains, user
can only plot one pole and zero at a time. The pole and zeros plot are shown in Fig. 4.3. User
may use the same code command to plot the other pole and zero.

Fig. 4.2 The z-transform output 

Program :

% zero and pole
b=[0] %b=zeros
a=[1/3] %a=poles
zplane(b,a)
title ("Zero pole plot");
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Chapter 4 : Z-transform and Discrete-time LTI Systems

Inverse z-Transform

The WolframAlpha online widget for inverse z-transform can be accessed online at
WolframAlpha website as shown in Fig. 4.4.

Fig.12 The z-transform output 

Fig.4.3 The pole and zero plot

Fig. 4.4. WolframAlpha online widget for inverse z-transform 
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Chapter 4 : Z-transform and Discrete-time LTI Systems

In this simulation, we use the sequence

X[𝑧] = 
10𝑧(𝑧+5)

(𝑧−1)(𝑧−2)(𝑧+3)

Key in the given sequence in the widget as follows

(10z(z+5))/((z-1)(z-2)(z+3))

The WolframAlpha displays the inverse z-transform as shown in Fig. 4.5.

Fig. 4.5. The inverse z-transform output
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Exercises

Chapter 4 : Z-transform and Discrete-time LTI Systems

1. Using WolframAlpha Online, compute the z-transform of the following functions.
Then compute the poles and zeros from the result using Octave Online. Write the
program.

a) x[n] = (
1

3
)𝑛𝑢[𝑛] + (

1

2
)𝑛𝑢[−𝑛 − 1]

b) x[n] = (
1

2
)𝑛𝑢[𝑛] + (

1

3
)𝑛𝑢[−𝑛 − 1]

2. Using WolframAlpha Online, compute the inverse z-transform of the following
functions.

a) X[𝑧] =
𝑧2

(2z+1)(z−1)

b) X[𝑧] =
4(2𝑧+1)

(𝑧+1)(𝑧−3)

Source: pixabay
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Fourier Analysis Of 

Continuous-time Signal 

and System
The Laplace transform and the z-
transform have been introduced in the
previous chapters as to convert time-
domain signals into complex s-domain
and z-domain. This representations are
more straightforward to examine and
process for various reasons. These
modifications also reveal more
information about the nature and
behavior of various signals and systems.

We will introduce further transformations
such as Fourier series and Fourier
transform that convert time-domain
signals into frequency domain (or
spectral) representations in this and the
subsequent chapters.

Fourier analysis is necessary for
describing certain types of systems and
their attributes in the frequency domain,
in addition to generating spectral
representations of signals. We will cover
Fourier analysis in the context of
continuous-time signals and systems in
this chapter.

Chapter 5 : Fourier Analysis Of Continuous-time Signal and System

Source: pixabay
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The trigonometric Fourier series
representation of a periodic signal x(t)
with fundamental period T0 is given by

where ak and bk are the Fourier
coefficients given by

If a periodic signal f(t) is even, then bk = 0
and its Fourier series contains only cosine
terms

If f(t) is odd, then ak = 0 and its Fourier
series contains only sine terms

Example:

Determine the trigonometric Fourier
Series of the following signal.

Solution :

Step 1 : Identify type of given function 
either odd or even function

It is an odd function. Thus , ak = 0 

The Fourier series is 

Step 2 : Identify the fundamental period 
𝑇0 and 𝜔0

𝑇0 = 2𝜋

𝜔0 =
2𝜋

𝑇0
=

2𝜋

2𝜋
= 1

Trigonometric Fourier Series

Chapter 5 : Fourier Analysis Of Continuous-time Signal and System

Fig. 5.1

𝑓(𝑡) =
𝑎0
2
+෍

𝑘=1

∞

{𝑎𝑘 cos 𝑘 𝜔0𝑡 + 𝑏𝑘 sin 𝑘 𝜔0𝑡}

𝑎𝑘 =
2

𝑇0
න

−𝑇/2

𝑇/2

𝑓 𝑥 cos 𝑘 𝜔0𝑡 𝑑𝑡

𝑏𝑘 =
2

𝑇0
න

−𝑇/2

𝑇/2

𝑓 𝑥 sin 𝑘 𝜔0𝑡 𝑑𝑡

𝑓(𝑡) =
𝑎0
2
+෍

𝑘=1

∞

𝑎𝑘 cos 𝑘 𝜔0𝑡

𝑓(𝑡) = ෍

𝑘=1

∞

𝑏𝑘 sin 𝑘 𝜔0𝑡

𝑓(𝑡) = ෍

𝑘=1

∞

𝑏𝑘 sin 𝑘 𝜔0𝑡

SIGNAL AND SYSTEM WITH GNU OCTAVE 

SIMULATION



44

Step 3 : Find the Fourier coefficients

Thus, trigonometric Fourier Series is

Chapter 5 : Fourier Analysis Of Continuous-time Signal and System

𝑓(𝑡) = ෍

𝑘=1

∞
2

𝑘𝜋
1 − (−1)𝑘 sin 𝑘 𝜔0𝑡
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Simulation

User can learn how to utilize octave-online software to execute Fourier Transform of
Continuous-Time and find the Fourier coefficient

Trigonometric Fourier Series

We may utilize the heaviside(t) command in GNU Octave to plot a diagram of a periodic
continuous-time signal as shown in Fig. 9. The Fourier coefficient are found with the
following command array

𝑓(𝑡)

𝑡
0

32

T

1

Fig. 9 : Periodic Signal

%Fourier Transform Of Continuous-Time
syms t
f=heaviside(t)-heaviside(t-1)

%Diagram of continuous-time
ezplot(f,[0,2])
T=2

%Fourier coefficients a0=c0
a0_sym=1/T*int(f,t,0,T)
double(a0_sym)
w0=2*pi/T
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%Fourier coefficients
a1=2/T*int(f*cos(1*w0*t),t,0,T)
a2=2/T*int(f*cos(2*w0*t),t,0,T)
a3=2/T*int(f*cos(3*w0*t),t,0,T)

%Fourier coefficients
b1=2/T*int(f*sin(1*w0*t),t,0,T)
b2=2/T*int(f*sin(2*w0*t),t,0,T)
b3=2/T*int(f*sin(3*w0*t),t,0,T)

GNU Octave displays the Fourier coefficient a1,a2,a3,b1,b2 and b3 as in Table 1

Fourier Coefficient Output

a1 a1 = (sym) 0

a2 a2 = (sym) 0

a3 a3 = (sym) 0

b1

b1 = (sym)
2
--
pi

b2 b2 = (sym) 0

b3

b3 = (sym)
2

----
3*pi

Table 1 Fourier coefficient from GNU Octave 
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Exercises

Chapter 5 : Fourier Analysis Of Continuous-time Signal and System

1. Execute the following integral function using GNU Octave as per example command
given.

Source: pixabay
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Fast Fourier Transform

The discrete Fourier transform (DFT) of a
sequence, or its inverse, is computed
using a fast Fourier transform (FFT) (IDFT).
Fourier analysis transforms a signal from
its original domain (typically time or
space) to a frequency domain
representation and back. Decomposing a
sequence of values into components of
different frequencies yields the DFT. This
procedure is useful in a variety of
domains, but computing it straight from a
definition is typically too time consuming
to be practical.

By factoring the DFT matrix into a product
of sparse (mainly zero) elements, an FFT
may quickly compute such modifications.
The speed difference can be huge,
especially for large data sets with N in the
hundreds or millions. Many FFT
techniques are substantially more
accurate than directly or indirectly
evaluating the DFT definition in the
presence of round-off error. FFT
algorithms are based on a variety of
published theories, ranging from simple
complex-number arithmetic to group
theory and number theory.

By factoring the DFT matrix into a product
of sparse (mainly zero) elements, an FFT
may quickly compute such modifications.
The speed difference can be huge,
especially for large data sets with N in the
hundreds or millions. Many FFT
techniques are substantially more
accurate than directly or indirectly
evaluating the DFT definition in the
presence of round-off error. FFT
algorithms are based on a variety of
published theories, ranging from simple
complex-number arithmetic to group
theory and number theory.

Chapter 6 : Fourier Analysis Of Discrete-time Signal and System
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Fast Fourier Transform

User can learn how to utilize GNU Octave to simulate Fourier analysis on discrete-time
signal and system. The simulation is to covert a noise corrupted signal y(t) in time domain
into frequency domain . First, a sound signal is created as shown in Fig. 6.1. Then, a random
noise signal is created as shown in Fig. 6.2. This noise is added in the sound signal producing
a corrupted signal as shown in Fig. 6.3. Next, fast Fourier Transform (FFT) is performed on
the signal to calculate and plot the power spectrum as shown in Fig. 6.4. The number of
sampling points is at 1000Hz for 5 seconds. This simulation is done using the following
command array .

clc
clear all
% To convert a noise corrupted signal y in time domain into a frequency domain
% number of sampling points at 1000Hz for 5 seconds
t2=0:0.001:0.5;
x2 = sin(2*pi*50*t2) + sin(2*pi*120*t2); % a sound signal
figure(1)
plot(1000*t2(1:50),x2(1:50))
title('A sound signal x2');xlabel('Time(milliseconds)')
y = x2 + 2*randn(size(t2)); % create random noise to be added to the sound signal.
figure(2)
plot(1000*t2(1:50),y(1:50)) % plot the corrupted sound signal
title('Signal Corrupted with zero-mean Random noise');xlabel('time(milliseconds)')
% will perform 1 512-points fast Fourier transform(FFT), calculate and plot the
power spectrum
Y = fft(y,512);
Pyy = Y.*conj(Y)/512;
f = 1000*(0:256)/512;
figure(3)
plot(f,Pyy(1:257))
title('Frequency content of y');xlabel('frequency (Hz)')

Simulation
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GNU Octave displays discrete-time input x[n], impulse response h[n] and convolution
output y[n] as shown in Fig. 6.1 to Fig. 6.4.

Fig. 6.1 : A sound signal

Fig. 6.2 : Random noise signal
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Fig. 6.3 : Signal corrupted with zero-mean random noise

Fig. 6.4 : Frequency content of signal y(t) 
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Exercises

Chapter 6 : Fourier Analysis Of Discrete-time Signal and System

Consider the periodic square wave x(t) shown in Fig. 6.5. Find the Fourier Series for the
function for which the graph is given below

Fig. 6.5

Source: pixabay
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